A closed-form solution can be obtained for kinematic analysis of spatial mechanisms by using analytical method.However,extra solutions would occur when solving the constraint equations of mechanism kinematics unless t...A closed-form solution can be obtained for kinematic analysis of spatial mechanisms by using analytical method.However,extra solutions would occur when solving the constraint equations of mechanism kinematics unless the constraint equations are established with a proper method and the solving approach is appropriate.In order to obtain a kinematic solution of the spherical Stephenson-III six-bar mechanism,spherical analytical theory is employed to construct the constraint equations.Firstly,the mechanism is divided into a four-bar loop and a two-bar unit.On the basis of the decomposition,vectors of the mechanism nodes are derived according to spherical analytical theory and the principle of coordinate transformation.Secondly,the structural constraint equations are constructed by applying cosine formula of spherical triangles to the top platform of the mechanism.Thirdly,the constraint equations are solved by using Bezout’ s elimination method for forward analysis and Sylvester’ s resultant elimination method for inverse kinematics respectively.By the aid of computer symbolic systems,Mathematica and Maple,symbolic closed-form solution of forward and inverse displacement analysis of spherical Stephenson-III six-bar mechanism are obtained.Finally,numerical examples of forward and inverse analysis are presented to illustrate the proposed approach.The results indicate that the constraint equations established with the proposed method are much simpler than those reported by previous literature,and can be readily eliminated and solved.展开更多
This paper focuses on a newly developed transmission for a milli-scale eight-legged crawling robot called OriSCO.The transmission allows intuitive steering by directly changing the direction of the propulsion force.Th...This paper focuses on a newly developed transmission for a milli-scale eight-legged crawling robot called OriSCO.The transmission allows intuitive steering by directly changing the direction of the propulsion force.The transmission is based on the constrained spherical six-bar linkage.The constrained spherical six-bar linkage passes only reciprocating motion out of the motor’s rotating motion,allowing the crawling legs to kick the ground and obtain propulsion.Steering is achieved by adjusting the geometric constraints of the spherical six-bar using a servomotor,allowing the direction of propulsion to be changed.As a result,the OriSCO can move along the ground at a speed of 2.15 body lengths/s,and the robot is 60 mm long.展开更多
Blank holder force (BHF) control is used to prevent wrinkles of sheet metal in deep drawing process. Based on a novel conception of BHF control technique driven by servo-motor, a new BHF device with six-bar linkage me...Blank holder force (BHF) control is used to prevent wrinkles of sheet metal in deep drawing process. Based on a novel conception of BHF control technique driven by servo-motor, a new BHF device with six-bar linkage mechanism has been designed and manufactured. Whole control system of the new BHF technique was developed, and the basic structure of the hardware configuration of the system was given. Software analysis, implementation and division of the functional modules have been done. Also, the control software in data acquisition and processing module has been developed in the relevant technology of the BHF control system for the requirements of real-time, stability and accuracy. By the new BHF device combined with the hardware and the software system, the BHF can be regulated accurately variation with the predefined BHF profile in deep drawing process.展开更多
By using transfer matrix,the lower-order natural frequencies of the Watt type planar six-barlinkage are calculated in this paper.The experiment of the modal analysis is done with the SignalProcessor 7T17S,and the expe...By using transfer matrix,the lower-order natural frequencies of the Watt type planar six-barlinkage are calculated in this paper.The experiment of the modal analysis is done with the SignalProcessor 7T17S,and the experiment results agree with the calculated ones.This method only re-quires calculation of lower-order transfer matrix and determinant values,so that, it can be done ona minicomputer such as IBM/PC.The method adopted in this paper is also suitable for vibrationanalysis of other types of linkages.展开更多
Crank shaft net torque of pumping units is a volatile alternating load, while output torque of a general motor is basically constant. Thus, load characteristics of pumping units and motors are not able to "harmoniou...Crank shaft net torque of pumping units is a volatile alternating load, while output torque of a general motor is basically constant. Thus, load characteristics of pumping units and motors are not able to "harmoniously" match each other; this resulted in a higher output of the motor, lower efficiency, and higher energy consumption of the pumping units. A new six-bar linkage pumping unit is presented according to moment-changing theory. It allows to adjust automatically following the changes of polished rod load, and achieves small crank shaft curve fluctuation. The new pumping unit improves motor efficiency, reduces motor output power, and saves energy. According to the design scheme, kinematics and kinetics models of the new six-bar linkages pumping unit are built up. An optimum design on the main peoCormance parameters and functional analysis were peoCormed.展开更多
In this paper,a new type of machinery which can enlarge the stroke of air cylinder is introduced. It is very useful when the original stroke of air cylinder cannot satisfy the work requirement.According to design requ...In this paper,a new type of machinery which can enlarge the stroke of air cylinder is introduced. It is very useful when the original stroke of air cylinder cannot satisfy the work requirement.According to design requirements,its multi-objective mathematic model with constrained conditions is built. In order to solve this model, some methods are discussed and used such as penalty function method,variable metric method,Newton tangent method and bisection method. Based on the optimal result,motion curves of enlarging stroke mechanism are obtained. Results show that the motion characteristic of enlarging stroke of air cylinder mechanism is satisfying. In addition,we also consider the influence of different initial values of link length to optimal results and two important laws are got in this paper on the basis of optimal results.展开更多
Most current biped robots are equipped with two feet arranged in the right and left which inspired by the human body system. Different from the existing configurations, a novel biped robot with inner and outer feet ba...Most current biped robots are equipped with two feet arranged in the right and left which inspired by the human body system. Different from the existing configurations, a novel biped robot with inner and outer feet based on a spatial six-bar 4R2C(R and C denote revolute and cylindric joints, respectively) mechanism is proposed. It can move along a line or a curve by three walking modes that are dwell adjustment mode, limit position adjustment mode and any position adjustment mode. Kinematic, gait planning and stability analyses are performed respectively, and a prototype is developed. Lastly, a potential application is considered and two manipulating modes(sphere and cylinder manipulating modes) are carried out. This interesting mechanism feathering its single dosed-chain structure and unique work performance is expected to motivate the configuration creation of biped robots.展开更多
Researchers have proposed various linkage mechanisms to connect knee and ankle joints for above-knee prosthe-ses,but most of them only offer natural walking.However,studies have shown that people assume a squatting po...Researchers have proposed various linkage mechanisms to connect knee and ankle joints for above-knee prosthe-ses,but most of them only offer natural walking.However,studies have shown that people assume a squatting posture during daily activities.This paper introduces a novel mechanism that connects the knee joint with the foot-ankle joint to enable both squatting and walking.The prosthetic knee used is the well-known 3R36,while the energy storing and return(ESAR)prosthetic foot is used for the ankle-foot joint.To coordinate knee and ankle joint movements,a six-bar linkage mechanism structure is proposed.Simulation results demonstrate that the proposed modular transfemoral prosthesis accurately mimics the motion patterns of a natural human leg during walking and squatting.For instance,the prosthesis allows a total knee flexion of more than 140°during squatting.The new prosthesis design also incorporates energy-storing mechanisms to reduce energy expenditure during walking for amputees.展开更多
Raptors are getting more attention from researchers because of their excellent flight abilities.And the excellent wing morphing ability is critical for raptors to achieve high maneuvering flight,which can be a good bi...Raptors are getting more attention from researchers because of their excellent flight abilities.And the excellent wing morphing ability is critical for raptors to achieve high maneuvering flight,which can be a good bionic inspiration for unmanned aerial vehicles(UAV)design.However,morphing wing motions of Falco peregrinus with multi postures cannot be consulted since such a motion database was nonexistent.This study aimed to provide data reference for future research in wing morphing kinetics.We used the computed tomography(CT)approach to obtain nine critical postures of the Falco peregrinus wing skeleton,followed with motion analysis of each joint and bone.Based on the obtained motion database,a six-bar kinematic model was proposed to regenerate wing motions with a high fidelity.展开更多
Contact force in a clearance joint affects the dynamic characteristics and leads to nonlinear response of the mechanism.It is necessary to assess the nonlinearity of contact force quantitatively.Therefore,a new method...Contact force in a clearance joint affects the dynamic characteristics and leads to nonlinear response of the mechanism.It is necessary to assess the nonlinearity of contact force quantitatively.Therefore,a new method named contact-force entropy weight is proposed in this paper.This method presents a comprehensive description of the judgment matrix in the X,Y,and Z directions.To assess the influence degrees of different clearances and angular velocities on the contact force,the method is applied to numerical calculation and simulation of a six-bar mechanism with a clearance joint to illustrate its application and investigate the influence degree of angular velocity and clearance on the contact force.By combining the simulation results and theoretical calculations,the influence degrees of different clearances and angular velocities on the contact-force entropy weight of the six-bar mechanism with a clearance joint are revealed.It is found that the angular velocity has a significant influence on the contact force entropy weight of the clearance joint,showing that the contact-force entropy weight is a feasible new method of assessing non-linearity of contact force quantitatively.The method gives a theoretical reference for quantitatively analyzing the nonlinear dynamics.展开更多
基金supported by National Natural Science Foundation of China(Grant No.50975186)
文摘A closed-form solution can be obtained for kinematic analysis of spatial mechanisms by using analytical method.However,extra solutions would occur when solving the constraint equations of mechanism kinematics unless the constraint equations are established with a proper method and the solving approach is appropriate.In order to obtain a kinematic solution of the spherical Stephenson-III six-bar mechanism,spherical analytical theory is employed to construct the constraint equations.Firstly,the mechanism is divided into a four-bar loop and a two-bar unit.On the basis of the decomposition,vectors of the mechanism nodes are derived according to spherical analytical theory and the principle of coordinate transformation.Secondly,the structural constraint equations are constructed by applying cosine formula of spherical triangles to the top platform of the mechanism.Thirdly,the constraint equations are solved by using Bezout’ s elimination method for forward analysis and Sylvester’ s resultant elimination method for inverse kinematics respectively.By the aid of computer symbolic systems,Mathematica and Maple,symbolic closed-form solution of forward and inverse displacement analysis of spherical Stephenson-III six-bar mechanism are obtained.Finally,numerical examples of forward and inverse analysis are presented to illustrate the proposed approach.The results indicate that the constraint equations established with the proposed method are much simpler than those reported by previous literature,and can be readily eliminated and solved.
基金supported by the Research Program funded by the SeoulTech(Seoul National University of Science and Technology).
文摘This paper focuses on a newly developed transmission for a milli-scale eight-legged crawling robot called OriSCO.The transmission allows intuitive steering by directly changing the direction of the propulsion force.The transmission is based on the constrained spherical six-bar linkage.The constrained spherical six-bar linkage passes only reciprocating motion out of the motor’s rotating motion,allowing the crawling legs to kick the ground and obtain propulsion.Steering is achieved by adjusting the geometric constraints of the spherical six-bar using a servomotor,allowing the direction of propulsion to be changed.As a result,the OriSCO can move along the ground at a speed of 2.15 body lengths/s,and the robot is 60 mm long.
文摘Blank holder force (BHF) control is used to prevent wrinkles of sheet metal in deep drawing process. Based on a novel conception of BHF control technique driven by servo-motor, a new BHF device with six-bar linkage mechanism has been designed and manufactured. Whole control system of the new BHF technique was developed, and the basic structure of the hardware configuration of the system was given. Software analysis, implementation and division of the functional modules have been done. Also, the control software in data acquisition and processing module has been developed in the relevant technology of the BHF control system for the requirements of real-time, stability and accuracy. By the new BHF device combined with the hardware and the software system, the BHF can be regulated accurately variation with the predefined BHF profile in deep drawing process.
文摘By using transfer matrix,the lower-order natural frequencies of the Watt type planar six-barlinkage are calculated in this paper.The experiment of the modal analysis is done with the SignalProcessor 7T17S,and the experiment results agree with the calculated ones.This method only re-quires calculation of lower-order transfer matrix and determinant values,so that, it can be done ona minicomputer such as IBM/PC.The method adopted in this paper is also suitable for vibrationanalysis of other types of linkages.
文摘Crank shaft net torque of pumping units is a volatile alternating load, while output torque of a general motor is basically constant. Thus, load characteristics of pumping units and motors are not able to "harmoniously" match each other; this resulted in a higher output of the motor, lower efficiency, and higher energy consumption of the pumping units. A new six-bar linkage pumping unit is presented according to moment-changing theory. It allows to adjust automatically following the changes of polished rod load, and achieves small crank shaft curve fluctuation. The new pumping unit improves motor efficiency, reduces motor output power, and saves energy. According to the design scheme, kinematics and kinetics models of the new six-bar linkages pumping unit are built up. An optimum design on the main peoCormance parameters and functional analysis were peoCormed.
基金Program for Changjiang Scholars and Innovative Research Team in University,China(No.IRT1220)Donghua University Thesis Innovation Fund,China(No.EG2014028)
文摘In this paper,a new type of machinery which can enlarge the stroke of air cylinder is introduced. It is very useful when the original stroke of air cylinder cannot satisfy the work requirement.According to design requirements,its multi-objective mathematic model with constrained conditions is built. In order to solve this model, some methods are discussed and used such as penalty function method,variable metric method,Newton tangent method and bisection method. Based on the optimal result,motion curves of enlarging stroke mechanism are obtained. Results show that the motion characteristic of enlarging stroke of air cylinder mechanism is satisfying. In addition,we also consider the influence of different initial values of link length to optimal results and two important laws are got in this paper on the basis of optimal results.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175030,51505022)Foundation of Talents of Beijing Jiaotong University,China(Grant No.2015RC047)+1 种基金China Postdoctoral Science Foundation(Grant No.2013M531168)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20130009110030)
文摘Most current biped robots are equipped with two feet arranged in the right and left which inspired by the human body system. Different from the existing configurations, a novel biped robot with inner and outer feet based on a spatial six-bar 4R2C(R and C denote revolute and cylindric joints, respectively) mechanism is proposed. It can move along a line or a curve by three walking modes that are dwell adjustment mode, limit position adjustment mode and any position adjustment mode. Kinematic, gait planning and stability analyses are performed respectively, and a prototype is developed. Lastly, a potential application is considered and two manipulating modes(sphere and cylinder manipulating modes) are carried out. This interesting mechanism feathering its single dosed-chain structure and unique work performance is expected to motivate the configuration creation of biped robots.
文摘Researchers have proposed various linkage mechanisms to connect knee and ankle joints for above-knee prosthe-ses,but most of them only offer natural walking.However,studies have shown that people assume a squatting posture during daily activities.This paper introduces a novel mechanism that connects the knee joint with the foot-ankle joint to enable both squatting and walking.The prosthetic knee used is the well-known 3R36,while the energy storing and return(ESAR)prosthetic foot is used for the ankle-foot joint.To coordinate knee and ankle joint movements,a six-bar linkage mechanism structure is proposed.Simulation results demonstrate that the proposed modular transfemoral prosthesis accurately mimics the motion patterns of a natural human leg during walking and squatting.For instance,the prosthesis allows a total knee flexion of more than 140°during squatting.The new prosthesis design also incorporates energy-storing mechanisms to reduce energy expenditure during walking for amputees.
基金supported by the National Natural Science Foundation of China(Grant Nos.52175279,52075489,and 51705459)the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY20E050022 and LGG20E050017)。
文摘Raptors are getting more attention from researchers because of their excellent flight abilities.And the excellent wing morphing ability is critical for raptors to achieve high maneuvering flight,which can be a good bionic inspiration for unmanned aerial vehicles(UAV)design.However,morphing wing motions of Falco peregrinus with multi postures cannot be consulted since such a motion database was nonexistent.This study aimed to provide data reference for future research in wing morphing kinetics.We used the computed tomography(CT)approach to obtain nine critical postures of the Falco peregrinus wing skeleton,followed with motion analysis of each joint and bone.Based on the obtained motion database,a six-bar kinematic model was proposed to regenerate wing motions with a high fidelity.
基金Project supported by the National Natural Science Foundation of China(Grant No.51875531)。
文摘Contact force in a clearance joint affects the dynamic characteristics and leads to nonlinear response of the mechanism.It is necessary to assess the nonlinearity of contact force quantitatively.Therefore,a new method named contact-force entropy weight is proposed in this paper.This method presents a comprehensive description of the judgment matrix in the X,Y,and Z directions.To assess the influence degrees of different clearances and angular velocities on the contact force,the method is applied to numerical calculation and simulation of a six-bar mechanism with a clearance joint to illustrate its application and investigate the influence degree of angular velocity and clearance on the contact force.By combining the simulation results and theoretical calculations,the influence degrees of different clearances and angular velocities on the contact-force entropy weight of the six-bar mechanism with a clearance joint are revealed.It is found that the angular velocity has a significant influence on the contact force entropy weight of the clearance joint,showing that the contact-force entropy weight is a feasible new method of assessing non-linearity of contact force quantitatively.The method gives a theoretical reference for quantitatively analyzing the nonlinear dynamics.