The characteristics of the energy transfer and nonlinear coupling among edge electromagnetic turbulence in thermal quench sub-period of the internal reconnection event (IRE) are studied at the sino-united spherical ...The characteristics of the energy transfer and nonlinear coupling among edge electromagnetic turbulence in thermal quench sub-period of the internal reconnection event (IRE) are studied at the sino-united spherical tokamak device using multiple Langmuir and magnetic probe arrays. The wavelet bispectral analysis and the modified Kim method are applied to investigate linear growth/damping and nonlinear energy transfer rates, along with multi-field turbulence interactions. The results show a multi-field nonlinear energy transfer from electrostatic to magnetic turbulence that results in two-mode coupling in magnetic turbulence, which may play a crucial role to trigger the IRE.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11261140327,11325524,11475102 and11575057the Chinese National Fusion Project for ITER under Grant Nos 2013GB112001,2013GB107001 and 2014GB108000+1 种基金the Tsinghua University Initiative Scientific Research Programthe 221 Program
文摘The characteristics of the energy transfer and nonlinear coupling among edge electromagnetic turbulence in thermal quench sub-period of the internal reconnection event (IRE) are studied at the sino-united spherical tokamak device using multiple Langmuir and magnetic probe arrays. The wavelet bispectral analysis and the modified Kim method are applied to investigate linear growth/damping and nonlinear energy transfer rates, along with multi-field turbulence interactions. The results show a multi-field nonlinear energy transfer from electrostatic to magnetic turbulence that results in two-mode coupling in magnetic turbulence, which may play a crucial role to trigger the IRE.