期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于特征通道和空间联合注意机制的遮挡行人检测方法 被引量:14
1
作者 陈勇 刘曦 刘焕淋 《电子与信息学报》 EI CSCD 北大核心 2020年第6期1486-1493,共8页
遮挡是行人检测任务中导致漏检发生的主要原因之一,对检测器性能造成了不利影响。为了增强检测器对于遮挡行人目标的检测能力,该文提出一种基于特征引导注意机制的单级行人检测方法。首先,设计一种特征引导注意模块,在保持特征通道间的... 遮挡是行人检测任务中导致漏检发生的主要原因之一,对检测器性能造成了不利影响。为了增强检测器对于遮挡行人目标的检测能力,该文提出一种基于特征引导注意机制的单级行人检测方法。首先,设计一种特征引导注意模块,在保持特征通道间的关联性的同时保留了特征图的空间信息,引导模型关注遮挡目标可视区域;然后,通过注意模块融合浅层和深层特征,从而提取到行人的高层语义特征;最后,将行人检测作为一种高层语义特征检测问题,通过激活图的形式预测得到行人位置和尺度,并生成最终的预测边界框,避免了基于先验框的预测方式所带来的额外参数设置。所提方法在CityPersons数据集上进行了测试,并在Caltech数据集上进行了跨数据集实验。结果表明该方法对于遮挡目标检测准确度优于其他对比算法。同时该方法实现了较快的检测速度,取得了检测准确度和速度的平衡。 展开更多
关键词 遮挡行人检测 单级检测器 注意机制
下载PDF
点云多尺度编码的单阶段3D目标检测网络
2
作者 韩俊博 胡海洋 +2 位作者 李忠金 潘开来 王利红 《中国图象图形学报》 CSCD 北大核心 2024年第11期3417-3432,共16页
目的自动引导运输小车(automatic guided vehicles,AGV)在工厂中搬运货物时会沿着规定路线运行,但是在靠近障碍物时只会简单地自动停止,无法感知障碍物的具体位置和大小,为了让AGV小车在复杂的工业场景中检测出各种障碍物,提出了一个点... 目的自动引导运输小车(automatic guided vehicles,AGV)在工厂中搬运货物时会沿着规定路线运行,但是在靠近障碍物时只会简单地自动停止,无法感知障碍物的具体位置和大小,为了让AGV小车在复杂的工业场景中检测出各种障碍物,提出了一个点云多尺度编码的单阶段3D目标检测网络(multi-scale encoding for single-stage 3D object detector from point clouds,MSE-SSD)。方法首先,该网络通过可学习的前景点下采样模块来对原始点云进行下采样,以精确地分割出前景点。其次,将这些前景点送入多抽象尺度特征提取模块进行处理,该模块能够分离出不同抽象尺度的特征图并对它们进行自适应地融合,以减少特征信息的丢失。然后,从特征图中预测出中心点,通过多距离尺度特征聚合模块将中心点周围的前景点按不同距离尺度进行聚合编码,得到语义特征向量。最后,利用中心点和语义特征向量一起预测包围框。结果MSE-SSD在自定义数据集中进行实验,多个目标的平均精度(average precision,AP)达到了最优,其中,在困难级别下空AGV分类、简单级别下载货AGV分类比排名第2的IASSD(learning highly efficient point-based detectors for 3D LiDAR point clouds)高出1.27%、0.08%,在简单级别下工人分类比排名第2的SA-SSD(structure aware single-stage 3D object detection from point cloud)高出0.71%。网络运行在单个RTX 2080Ti GPU上检测速度高达77帧/s,该速度在所有主流网络中排名第2。将训练好的网络部署在AGV小车搭载的开发板TXR上,检测速度达到了8.6帧/s。结论MSE-SSD在AGV小车避障检测方面具有较高的精确性和实时性。 展开更多
关键词 3D目标检测 单阶段检测网络 点云下采样 点云特征提取 点云特征聚合
原文传递
基于无人机图像的输电线路部件检测方法研究 被引量:1
3
作者 韩汉贤 罗金满 +3 位作者 刘丽媛 赵善龙 夏成文 赵爱林 《电测与仪表》 北大核心 2024年第5期198-203,共6页
针对无人机电力巡检模式在图像快速检测方面存在的自动化程度和效率低等问题,提出了一种将单级多框预测检测器SSD与特征金字塔网络FPN相结合的输电线路部件检测方法,并对绝缘子故障进行检测。在SSD目标检测的基础上,加入了FPN特征金字... 针对无人机电力巡检模式在图像快速检测方面存在的自动化程度和效率低等问题,提出了一种将单级多框预测检测器SSD与特征金字塔网络FPN相结合的输电线路部件检测方法,并对绝缘子故障进行检测。在SSD目标检测的基础上,加入了FPN特征金字塔结构,局部融合层间特征信息。实验验证了文中所提方法的优越性。实验结果表明,在部件检测中,该方法对大、中、小尺寸目标均具有良好的检测效果,检测精度在90%左右,在绝缘子故障检测中检测精度达到87.4%。为输电线路部件检测技术的发展提供了参考。 展开更多
关键词 无人机 输电线路 单级多框预测检测器 特征金字塔网络 目标检测
下载PDF
融合策略优选和双注意力的单阶段目标检测 被引量:4
4
作者 戴坤 许立波 +1 位作者 黄世旸 李鋆铃 《中国图象图形学报》 CSCD 北大核心 2022年第8期2430-2443,共14页
目的 特征融合是改善模糊图像、小目标以及受遮挡物体等目标检测困难的有效手段之一,为了更有效地利用特征融合来整合不同网络层次的特征信息,显著表达其中的重要特征,本文提出一种基于融合策略优选和双注意力机制的单阶段目标检测算法F... 目的 特征融合是改善模糊图像、小目标以及受遮挡物体等目标检测困难的有效手段之一,为了更有效地利用特征融合来整合不同网络层次的特征信息,显著表达其中的重要特征,本文提出一种基于融合策略优选和双注意力机制的单阶段目标检测算法FDA-SSD(fusion double attention single shot multibox detector)。方法 设计融合策略优化选择方法,结合特征金字塔(feature pyramid network, FPN)来确定最优的多层特征图组合及融合过程,之后连接双注意力模块,通过对各个通道和空间特征的权重再分配,提升模型对通道特征和空间信息的敏感性,最终产生包含丰富语义信息和凸显重要特征的特征图组。结果 本文在公开数据集PASCAL VOC2007(pattern analysis, statistical modelling and computational learning visual object classes)和TGRS-HRRSD-Dataset(high resolution remote sensing detection)上进行对比实验,结果表明,在输入为300×300像素的PASCAL VOC2007测试集上,FDA-SSD模型的精度达到79.8%,比SSD(single shot multibox detector)、RSSD(rainbow SSD)、DSSD(de-convolution SSD)、FSSD(feature fusion SSD)模型分别高了2.6%、1.3%、1.2%、1.0%,在Titan X上的检测速度为47帧/s(frame per second, FPS),与SSD算法相当,分别高于RSSD和DSSD模型12 FPS和37.5 FPS。在输入像素为300×300的TGRS-HRRSD-Dataset测试集上的精度为84.2%,在Tesla V100上的检测速度高于SSD模型10%的情况下,准确率提高了1.5%。结论 通过在单阶段目标检测模型中引入融合策略选择和双注意力机制,使得预测的速度和准确率同时得到提升,并且对于小目标、受遮挡以及模糊图像等难目标的检测能力也得到较大提升。 展开更多
关键词 单阶段目标检测 SSD算法 特征金字塔(FPN) 特征融合 注意力机制
原文传递
基于特征优化与深层次融合的目标检测算法 被引量:4
5
作者 谢誉 包梓群 +3 位作者 张娜 吴彪 涂小妹 包晓安 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第12期2403-2415,共13页
针对单阶段多边框检测算法(SSD)存在对小目标检测误差较大的问题,提出基于特征优化与深层次融合的目标检测算法,通过空间通道特征增强(SCFE)模块和深层次特征金字塔网络(DFPN)改进SSD.SCFE模块基于局部空间特征增强和全局通道特征增强... 针对单阶段多边框检测算法(SSD)存在对小目标检测误差较大的问题,提出基于特征优化与深层次融合的目标检测算法,通过空间通道特征增强(SCFE)模块和深层次特征金字塔网络(DFPN)改进SSD.SCFE模块基于局部空间特征增强和全局通道特征增强机制优化特征层,注重特征层的细节信息;DFPN基于残差空间通道增强模块改进特征金字塔网络,使不同尺度特征层进行深层次特征融合,提升目标检测精度.在训练阶段添加样本加权训练策略,使网络注重训练定位良好的样本和置信度高的样本.实验结果表明,在PASCAL VOC数据集上,所提算法在保证速度的同时检测精度由SSD的77.2%提升至79.7%;在COCO数据集上,所提算法的检测精度由SSD的25.6%提升至30.1%,对小目标的检测精度由SSD的6.8%提升至13.3%. 展开更多
关键词 目标检测 深层次特征金字塔网络(DFPN) 空间通道特征增强(SCFE) 样本加权训练 单阶段多边框检测算法(SSD)
下载PDF
基于轻量级卷积神经网络的人脸检测算法 被引量:3
6
作者 朱灵灵 高超 陈福才 《计算机工程》 CAS CSCD 北大核心 2021年第7期273-280,共8页
针对人脸检测在移动端应用时面临的移动设备计算能力及存储资源受限等问题,设计一种基于轻量级卷积神经网络的改进人脸检测算法Lightweight-SSH。基于单点无头人脸检测器(SSH)人脸检测算法,采用基于MobileNet的轻量级卷积神经网络对样... 针对人脸检测在移动端应用时面临的移动设备计算能力及存储资源受限等问题,设计一种基于轻量级卷积神经网络的改进人脸检测算法Lightweight-SSH。基于单点无头人脸检测器(SSH)人脸检测算法,采用基于MobileNet的轻量级卷积神经网络对样本数据进行特征提取,减少模型的参数量和计算量,通过在SSH网络的检测模块中引入可变形卷积层,提升卷积神经网络对人脸形变的建模能力。在Wider Face数据集上的实验结果表明,与常用人脸检测算法相比,Lightweight-SSH算法在保证检测精度的前提下,明显降低模型复杂度,并提高了模型检测速度。 展开更多
关键词 人脸检测 可变形卷积 MobileNet网络 单点无头人脸检测器 Lightweight-SSH算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部