Understanding bend loss in single-ring hollow-core photonic crystal fibers(PCFs)is becoming of increasing importance as the fibers enter practical applications.While purely numerical approaches are useful,there is a n...Understanding bend loss in single-ring hollow-core photonic crystal fibers(PCFs)is becoming of increasing importance as the fibers enter practical applications.While purely numerical approaches are useful,there is a need for a simpler analytical formalism that provides physical insight and can be directly used in the design of PCFs with low bend loss.We show theoretically and experimentally that a wavelength-dependent critical bend radius exists below which the bend loss reaches a maximum,and that this can be calculated from the structural parameters of a fiber using a simple analytical formula.This allows straightforward design of single-ring PCFs that are bend-insensitive for specified ranges of bend radius and wavelength.It also can be used to derive an expression for the bend radius that yields optimal higher-order mode suppression for a given fiber structure.展开更多
In a local search algorithm,one of its most important features is the definition of its neighborhood which is crucial to the algorithm's performance.In this paper,we present an analysis of neighborhood combination...In a local search algorithm,one of its most important features is the definition of its neighborhood which is crucial to the algorithm's performance.In this paper,we present an analysis of neighborhood combination search for solv-ing the single-machine scheduling problem with sequence-dependent setup time with the objective of minimizing total weighted tardiness(SMSWT).First,We propose a new neighborhood structure named Block Swap(B1)which can be con-sidered as an extension of the previously widely used Block Move(B2)neighborhood,and a fast incremental evaluation technique to enhance its evaluation efficiency.Second,based on the Block Swap and Block Move neighborhoods,we present two kinds of neighborhood structures:neighborhood union(denoted by B1UB2)and token-ring search(denoted by B1→B2),both of which are combinations of B1 and B2.Third,we incorporate the neighborhood union and token-ring search into two representative metaheuristic algorithms:the Iterated Local Search Algorithm(ILSnew)and the Hybrid Evolutionary Algorithm(HEA_(new))to investigate the performance of the neighborhood union and token-ring search.Exten-sive experiments show the competitiveness of the token-ring search combination mechanism of the two neighborhoods.Tested on the 120 public benchmark instances,our HEA_(new)has a highly competitive performance in solution quality and computational time compared with both the exact algorithms and recent metaheuristics.We have also tested the HEA,new algorithm with the selected neighborhood combination search to deal with the 64 public benchmark instances of the single-machine scheduling problem with sequence-dependent setup time.HEAnew is able to match the optimal or the best known results for all the 64 instances.In particular,the computational time for reaching the best well-known results for five chal-lenging instances is reduced by at least 61.25%.展开更多
A high-efficiency Brillouin fiber ring laser is demonstrated using the standard single-mode fiber. The laser exhibits a 3.6-mW threshold. The output power is 22 mW with 40-mW pump power, and the maximum optical-to-opt...A high-efficiency Brillouin fiber ring laser is demonstrated using the standard single-mode fiber. The laser exhibits a 3.6-mW threshold. The output power is 22 mW with 40-mW pump power, and the maximum optical-to-optical efficiency is 5570. The output is single wavelength with a 3-dB linewidth of 5 MHz, and the interval of center frequency between the laser and the pump light is 11 GHz (0.088 nm). It is shown that the stimulated Brillouin scattering threshold of ring resonator is lower and the energy transfer efficiency is higher than those in fiber.展开更多
文摘Understanding bend loss in single-ring hollow-core photonic crystal fibers(PCFs)is becoming of increasing importance as the fibers enter practical applications.While purely numerical approaches are useful,there is a need for a simpler analytical formalism that provides physical insight and can be directly used in the design of PCFs with low bend loss.We show theoretically and experimentally that a wavelength-dependent critical bend radius exists below which the bend loss reaches a maximum,and that this can be calculated from the structural parameters of a fiber using a simple analytical formula.This allows straightforward design of single-ring PCFs that are bend-insensitive for specified ranges of bend radius and wavelength.It also can be used to derive an expression for the bend radius that yields optimal higher-order mode suppression for a given fiber structure.
基金supported by the National Natural Science Foundation of China under Grant Nos.62202192,71801218,and 72101094.
文摘In a local search algorithm,one of its most important features is the definition of its neighborhood which is crucial to the algorithm's performance.In this paper,we present an analysis of neighborhood combination search for solv-ing the single-machine scheduling problem with sequence-dependent setup time with the objective of minimizing total weighted tardiness(SMSWT).First,We propose a new neighborhood structure named Block Swap(B1)which can be con-sidered as an extension of the previously widely used Block Move(B2)neighborhood,and a fast incremental evaluation technique to enhance its evaluation efficiency.Second,based on the Block Swap and Block Move neighborhoods,we present two kinds of neighborhood structures:neighborhood union(denoted by B1UB2)and token-ring search(denoted by B1→B2),both of which are combinations of B1 and B2.Third,we incorporate the neighborhood union and token-ring search into two representative metaheuristic algorithms:the Iterated Local Search Algorithm(ILSnew)and the Hybrid Evolutionary Algorithm(HEA_(new))to investigate the performance of the neighborhood union and token-ring search.Exten-sive experiments show the competitiveness of the token-ring search combination mechanism of the two neighborhoods.Tested on the 120 public benchmark instances,our HEA_(new)has a highly competitive performance in solution quality and computational time compared with both the exact algorithms and recent metaheuristics.We have also tested the HEA,new algorithm with the selected neighborhood combination search to deal with the 64 public benchmark instances of the single-machine scheduling problem with sequence-dependent setup time.HEAnew is able to match the optimal or the best known results for all the 64 instances.In particular,the computational time for reaching the best well-known results for five chal-lenging instances is reduced by at least 61.25%.
文摘A high-efficiency Brillouin fiber ring laser is demonstrated using the standard single-mode fiber. The laser exhibits a 3.6-mW threshold. The output power is 22 mW with 40-mW pump power, and the maximum optical-to-optical efficiency is 5570. The output is single wavelength with a 3-dB linewidth of 5 MHz, and the interval of center frequency between the laser and the pump light is 11 GHz (0.088 nm). It is shown that the stimulated Brillouin scattering threshold of ring resonator is lower and the energy transfer efficiency is higher than those in fiber.