In this paper, form vulnerability theory was applied to the analysis of the failure mechanisms of single-layer latticed spherical shells subjected to seismic excitations. Three 1/10 scale testing models were designed ...In this paper, form vulnerability theory was applied to the analysis of the failure mechanisms of single-layer latticed spherical shells subjected to seismic excitations. Three 1/10 scale testing models were designed with characteristics as follows: Model 1 possesses overall uniform stiffness and is expected to collapse in the strength failure mode as some members become plastic; Model 2 possesses six man-made weak parts located on six radial main rib zones and is expected to collapse in the dynamic in- stability mode with all members still in the elastic stage; Model 3 strengthens the six weak zones of Model 2, and therefore, its stiffness is uniform. Model 3 is proposed to collapse in the strength failure mode when the members are still in the elastic stage By increasing the peak ground accelerations of seismic waves gradually, the shaking table tests were carried out until all three models collapsed (or locally collapsed). On the basis of form vulnerability theory, topological hierarchy models of the test models were established through a clustering process, and various failure scenarios, including overall collapse scenarios and partial collapse scenarios, were identified by unzipping corresponding hierarchical models. By comparison of the failure scenarios based on theoretical analysis and experiments, it was found that vulnerability theory could effectively reflect the weak- ness zones in topological relations of the structures from the perspective of internal causes. The intemal mechanisms of the distinct failure characteristics of reticulated shells subjected to seismic excitations were also revealed in this process. The well-formedness of structural clusters, Q, is closely related to the collapse modes, i.e., uniform changes of Q indicate a uniform distribution of overall structural stiffness, which indicates that strength failure is likely to happen; conversely, non-uniform changes of Q indicate that weak zones exist in the structure, and dynamic instability is likely to occur.展开更多
In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the singl...In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the single-layer electroplated cubic boron nitride (CBN) wheel and brazed CBN wheel, respectively. The comparative grinding performance was studied in terms of grinding force, grinding temperature, grinding-induced surface features and defects. The results display that the grinding forces and grinding temperature obtained with the brazed CBN wheel are always lower than those with the electroplated CBN wheel. Though the voids and microcracks are the dominant grinding-induced surface defects, the brazed CBN wheel produces less surface defects compared to the electroplated wheel according to the statistical analysis results. The max mum materials removal rate with the brazed CBN wheel is much higher than that with the electroplated one. All above indicate that the single-layer brazed CBN super-abrasive wheel is more suitable for high-speed grinding of PTMCs than the electroplated counterpart.展开更多
As a multicellular organism,rice flourishes relying on gene expression diversity among cells of various functions.However,cellular-resolution transcriptome features are yet to be fully recognized,let alone cell-specif...As a multicellular organism,rice flourishes relying on gene expression diversity among cells of various functions.However,cellular-resolution transcriptome features are yet to be fully recognized,let alone cell-specific transcriptional responses to environmental stimuli.In this study,we apply single-cell RNA sequencing to both shoot and root of rice seedlings growing in Kimura B nutrient solution or exposed to various abiotic stresses and characterize transcriptomes for a total of 237,431 individual cells.We identify 15 and 9 cell types in the leaf and root,respectively,and observe that common transcriptome features are often shared between leaves and roots in the same tissue layer,except for endodermis or epidermis.Abiotic stress stimuli alter gene expression largely in a cell type-specific manner,but for a given cell type,different stresses often trigger transcriptional regulation of roughly the same set of genes.Besides,we detect proportional changes in cell populations in response to abiotic stress and investigate the underlying molecular mechanisms through single-cell reconstruction of the developmental trajectory.Collectively,our study represents a benchmark-setting data resource of single-cell transcriptome atlas for rice seedlings and an illustration of exploiting such resources to drive discoveries in plant biology.展开更多
Noble single‐atom catalysts have rapidly been attracting attention due to their unique catalytic properties and maximized utilization.Atomic layer deposition(ALD)is an emerging powerful technique for large‐scale syn...Noble single‐atom catalysts have rapidly been attracting attention due to their unique catalytic properties and maximized utilization.Atomic layer deposition(ALD)is an emerging powerful technique for large‐scale synthesis of stable single atom.In this review,we summarize recent developments of single atom synthesized by ALD as well as explore future research direction and trends.展开更多
NO_2 sensors with ultrahigh sensitivity are demanded for future electronic sensing systems. However,traditional sensors are considerably limited by the relative low sensitivity, high cost and complicated process. Here...NO_2 sensors with ultrahigh sensitivity are demanded for future electronic sensing systems. However,traditional sensors are considerably limited by the relative low sensitivity, high cost and complicated process. Here, we report a simply and reliable flexible NO_2 sensor based on single-layer MoS_2. The flexible sensor exhibits high sensitivity to NO_2 gas due to ultra-large specific surface area and the nature of two-dimensional(2 D) semiconductor. When the NO_2 is 400 ppb(parts per billion), compared with the dark and strain-free conditions, the sensitivity of the single-layer sensor is enhanced to 671% with a625 nm red light-emitting diode(LED) illumination of 4 mW/cm^2 power under 0.67% tensile strain.More important, the response time is dramatically reduced to $16 s and it only needs $65 s to complete90% recovery. A theoretical model is proposed to discuss the microscopic mechanisms. We find that the remarkable sensing characteristics are the result of coupling among piezoelectricity, photoelectricity and adsorption-desorption induced charges transfer in the single-layer MoS_2 Schottky junction based device.Our work opens up the way to further enhancements in the sensitivity of gas sensor based on single-layer MoS_2 by introducing photogating and piezo-phototronic effects in mesoscopic systems.展开更多
SnO2 hollow nanospheres were successfully synthesized via a facile one-step solvothermal method.Characterizations show that the as-prepared SnO2 spheres are of hollow structure with a diameter at around 50 nm,and espe...SnO2 hollow nanospheres were successfully synthesized via a facile one-step solvothermal method.Characterizations show that the as-prepared SnO2 spheres are of hollow structure with a diameter at around 50 nm,and especially,the shell of the spheres is assembled by single layer SnO2 nanocrystals.The surface area of the material reaches up to 202.5 m^2/g.As an anode material for Li ion batteries,the sample exhibited improved electrochemical performance compared with commercial SnO2 particles.After cycled at high current rate of 0.5 C,1 C and 0.5 C for 20 cycles,respectively,the electrode can maintain a capacity of 509 mAh/g.The suitable shell thickness/diameter ratio endows the good structural stability of the material during cycling,which promises the excellent cycling performance of the electrode.The large surface area and the ultra thin shell ensure the high rate performance of the material.展开更多
In order to study the infl uence of the ground motion spatial eff ect on the seismic response of large span spatial structures with isolation bearings, a single-layer cylindrical latticed shell scale model with a simi...In order to study the infl uence of the ground motion spatial eff ect on the seismic response of large span spatial structures with isolation bearings, a single-layer cylindrical latticed shell scale model with a similarity ratio of 1/10 was constructed. An earthquake simulation shaking table test on the response under multiple-support excitations was performed with the high-position seismic isolation method using high damping rubber (HDR) bearings. Small-amplitude sinusoidal waves and seismic wave records with various spectral characteristics were applied to the model. The dynamic characteristics of the model and the seismic isolation eff ect on it were analyzed at varying apparent wave velocities, namely infi nitely great, 1000 m/s, 500 m/s and 250 m/s. Besides, numerical simulations were carried out by Matlab software. According to the comparison results, the numerical results agreed well with the experimental data. Moreover, the results showed that the latticed shell roof exhibited a translational motion as a rigid body after the installation of the HDR bearings with a much lower natural frequency, higher damping ratio and only 1/2~1/8 of the acceleration response peak values. Meanwhile, the structural responses and the bearing deformations at the output end of the seismic waves were greatly increased under multiple-support excitations.展开更多
Background: The myometrium at the location of the CS (caesarean section) scars, also known as residual myometrium thickness (RMT), is larger after a double-layer uterine closure procedure than following a single-layer...Background: The myometrium at the location of the CS (caesarean section) scars, also known as residual myometrium thickness (RMT), is larger after a double-layer uterine closure procedure than following a single-layer one. It may lessen the formation of a niche that is the myometrium’s disruption at the location of the scar of the uterus. Gynecological manifestations, obstetric problems in a future pregnancy and birth, and maybe subfertility are linked to thin RMT and a niche. Objective: To ascertain if double-layer unlocked closure of the uterus is better than single-layer one in terms of post-menstrual spotting and niche development following a first CS. Patients and Methods: In this randomized clinical study, 287 patients were evaluated for qualifying. Of all eligible individuals, 57 patients were excluded from the study based on the inclusion criteria. Results: The variation in ages, gestational age, body mass index (BMI), and cesarean section indications between the two assigned groups is statistically insignificant. However, postmenstrual spotting was statistically significantly more common in single-layer group compared to in double-group. The current study revealed ultrasound findings suggestive of niche formation was statistically significantly more common in single-layer group compared to in double-layer group. Conclusion: As evident from the current study, it demonstrates the advantages of double-layer unlocked closure of the uterus over single-layer one in terms of post-menstrual spotting and niche development following first-time cs. Thus, we deduced that fewer niches are formed, and fewer menstrual spotting occurs in the presence of double unlocked layers closure. To ascertain the impact of uterus closure method on post-operative niche development and the risk of obstetrics and gynaecological problems, further prospective trials with extended follow-up periods are required.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 90715005)the New Century Excellent Talent of Ministry of Education of China (Grant No. NCET-07-0186)the Doctoral Fund of Ministry of China (Grant No. 200802860007)
文摘In this paper, form vulnerability theory was applied to the analysis of the failure mechanisms of single-layer latticed spherical shells subjected to seismic excitations. Three 1/10 scale testing models were designed with characteristics as follows: Model 1 possesses overall uniform stiffness and is expected to collapse in the strength failure mode as some members become plastic; Model 2 possesses six man-made weak parts located on six radial main rib zones and is expected to collapse in the dynamic in- stability mode with all members still in the elastic stage; Model 3 strengthens the six weak zones of Model 2, and therefore, its stiffness is uniform. Model 3 is proposed to collapse in the strength failure mode when the members are still in the elastic stage By increasing the peak ground accelerations of seismic waves gradually, the shaking table tests were carried out until all three models collapsed (or locally collapsed). On the basis of form vulnerability theory, topological hierarchy models of the test models were established through a clustering process, and various failure scenarios, including overall collapse scenarios and partial collapse scenarios, were identified by unzipping corresponding hierarchical models. By comparison of the failure scenarios based on theoretical analysis and experiments, it was found that vulnerability theory could effectively reflect the weak- ness zones in topological relations of the structures from the perspective of internal causes. The intemal mechanisms of the distinct failure characteristics of reticulated shells subjected to seismic excitations were also revealed in this process. The well-formedness of structural clusters, Q, is closely related to the collapse modes, i.e., uniform changes of Q indicate a uniform distribution of overall structural stiffness, which indicates that strength failure is likely to happen; conversely, non-uniform changes of Q indicate that weak zones exist in the structure, and dynamic instability is likely to occur.
基金the financial support for this work by the National Natural Science Foundation of China (No.51235004 and No.51375235)the Fundamental Research Funds for the Central Universities (No.NE2014103)the Science and Technology Supporting Program of Jiangsu Province (No.BE2013109 and No.BY2014003-008)
文摘In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the single-layer electroplated cubic boron nitride (CBN) wheel and brazed CBN wheel, respectively. The comparative grinding performance was studied in terms of grinding force, grinding temperature, grinding-induced surface features and defects. The results display that the grinding forces and grinding temperature obtained with the brazed CBN wheel are always lower than those with the electroplated CBN wheel. Though the voids and microcracks are the dominant grinding-induced surface defects, the brazed CBN wheel produces less surface defects compared to the electroplated wheel according to the statistical analysis results. The max mum materials removal rate with the brazed CBN wheel is much higher than that with the electroplated one. All above indicate that the single-layer brazed CBN super-abrasive wheel is more suitable for high-speed grinding of PTMCs than the electroplated counterpart.
基金This work was supported by grants from the National Natural Science Foundation of China(31900229 to Q.H.and 31922014 to W.Q.).
文摘As a multicellular organism,rice flourishes relying on gene expression diversity among cells of various functions.However,cellular-resolution transcriptome features are yet to be fully recognized,let alone cell-specific transcriptional responses to environmental stimuli.In this study,we apply single-cell RNA sequencing to both shoot and root of rice seedlings growing in Kimura B nutrient solution or exposed to various abiotic stresses and characterize transcriptomes for a total of 237,431 individual cells.We identify 15 and 9 cell types in the leaf and root,respectively,and observe that common transcriptome features are often shared between leaves and roots in the same tissue layer,except for endodermis or epidermis.Abiotic stress stimuli alter gene expression largely in a cell type-specific manner,but for a given cell type,different stresses often trigger transcriptional regulation of roughly the same set of genes.Besides,we detect proportional changes in cell populations in response to abiotic stress and investigate the underlying molecular mechanisms through single-cell reconstruction of the developmental trajectory.Collectively,our study represents a benchmark-setting data resource of single-cell transcriptome atlas for rice seedlings and an illustration of exploiting such resources to drive discoveries in plant biology.
基金supported by the Natural Science and Engineering Research Council of Canada (NSERC)the Canada Research Chair Program (CRC) and the University of Western Ontario (UWO)
文摘Noble single‐atom catalysts have rapidly been attracting attention due to their unique catalytic properties and maximized utilization.Atomic layer deposition(ALD)is an emerging powerful technique for large‐scale synthesis of stable single atom.In this review,we summarize recent developments of single atom synthesized by ALD as well as explore future research direction and trends.
基金supported by the National Key Research and Development Program of China(2016YFA0202703,2016YFA0202704)the National Natural Science Foundation of China(51472056)+1 种基金the Thousands Talents Plan For Pioneer Researcher And His Innovation Team,Chinathe Recruitment Program of Global Youth Experts,China
文摘NO_2 sensors with ultrahigh sensitivity are demanded for future electronic sensing systems. However,traditional sensors are considerably limited by the relative low sensitivity, high cost and complicated process. Here, we report a simply and reliable flexible NO_2 sensor based on single-layer MoS_2. The flexible sensor exhibits high sensitivity to NO_2 gas due to ultra-large specific surface area and the nature of two-dimensional(2 D) semiconductor. When the NO_2 is 400 ppb(parts per billion), compared with the dark and strain-free conditions, the sensitivity of the single-layer sensor is enhanced to 671% with a625 nm red light-emitting diode(LED) illumination of 4 mW/cm^2 power under 0.67% tensile strain.More important, the response time is dramatically reduced to $16 s and it only needs $65 s to complete90% recovery. A theoretical model is proposed to discuss the microscopic mechanisms. We find that the remarkable sensing characteristics are the result of coupling among piezoelectricity, photoelectricity and adsorption-desorption induced charges transfer in the single-layer MoS_2 Schottky junction based device.Our work opens up the way to further enhancements in the sensitivity of gas sensor based on single-layer MoS_2 by introducing photogating and piezo-phototronic effects in mesoscopic systems.
基金financially supported by the National Basic Research Program of China(Nos.2010CB934700,2013CB934004,2011CB935704)National Natural Science Foundation of China(No.11079002)
文摘SnO2 hollow nanospheres were successfully synthesized via a facile one-step solvothermal method.Characterizations show that the as-prepared SnO2 spheres are of hollow structure with a diameter at around 50 nm,and especially,the shell of the spheres is assembled by single layer SnO2 nanocrystals.The surface area of the material reaches up to 202.5 m^2/g.As an anode material for Li ion batteries,the sample exhibited improved electrochemical performance compared with commercial SnO2 particles.After cycled at high current rate of 0.5 C,1 C and 0.5 C for 20 cycles,respectively,the electrode can maintain a capacity of 509 mAh/g.The suitable shell thickness/diameter ratio endows the good structural stability of the material during cycling,which promises the excellent cycling performance of the electrode.The large surface area and the ultra thin shell ensure the high rate performance of the material.
基金National Natural Science Foundation of China under Grant No.51278008the National Key Research and Development Plan of China under Grant No.2016YFC0701103
文摘In order to study the infl uence of the ground motion spatial eff ect on the seismic response of large span spatial structures with isolation bearings, a single-layer cylindrical latticed shell scale model with a similarity ratio of 1/10 was constructed. An earthquake simulation shaking table test on the response under multiple-support excitations was performed with the high-position seismic isolation method using high damping rubber (HDR) bearings. Small-amplitude sinusoidal waves and seismic wave records with various spectral characteristics were applied to the model. The dynamic characteristics of the model and the seismic isolation eff ect on it were analyzed at varying apparent wave velocities, namely infi nitely great, 1000 m/s, 500 m/s and 250 m/s. Besides, numerical simulations were carried out by Matlab software. According to the comparison results, the numerical results agreed well with the experimental data. Moreover, the results showed that the latticed shell roof exhibited a translational motion as a rigid body after the installation of the HDR bearings with a much lower natural frequency, higher damping ratio and only 1/2~1/8 of the acceleration response peak values. Meanwhile, the structural responses and the bearing deformations at the output end of the seismic waves were greatly increased under multiple-support excitations.
文摘Background: The myometrium at the location of the CS (caesarean section) scars, also known as residual myometrium thickness (RMT), is larger after a double-layer uterine closure procedure than following a single-layer one. It may lessen the formation of a niche that is the myometrium’s disruption at the location of the scar of the uterus. Gynecological manifestations, obstetric problems in a future pregnancy and birth, and maybe subfertility are linked to thin RMT and a niche. Objective: To ascertain if double-layer unlocked closure of the uterus is better than single-layer one in terms of post-menstrual spotting and niche development following a first CS. Patients and Methods: In this randomized clinical study, 287 patients were evaluated for qualifying. Of all eligible individuals, 57 patients were excluded from the study based on the inclusion criteria. Results: The variation in ages, gestational age, body mass index (BMI), and cesarean section indications between the two assigned groups is statistically insignificant. However, postmenstrual spotting was statistically significantly more common in single-layer group compared to in double-group. The current study revealed ultrasound findings suggestive of niche formation was statistically significantly more common in single-layer group compared to in double-layer group. Conclusion: As evident from the current study, it demonstrates the advantages of double-layer unlocked closure of the uterus over single-layer one in terms of post-menstrual spotting and niche development following first-time cs. Thus, we deduced that fewer niches are formed, and fewer menstrual spotting occurs in the presence of double unlocked layers closure. To ascertain the impact of uterus closure method on post-operative niche development and the risk of obstetrics and gynaecological problems, further prospective trials with extended follow-up periods are required.