Electrochemical water splitting is regarded as the most promising approach to produce hydrogen.However,the sluggish electrochemical reactions occurring at the anode and cathode,namely,the oxygen evolution reaction(OER...Electrochemical water splitting is regarded as the most promising approach to produce hydrogen.However,the sluggish electrochemical reactions occurring at the anode and cathode,namely,the oxygen evolution reaction(OER)and the hydrogen evolution reaction(HER),respectively,consume a tremendous amount of energy,seriously hampering its wide application.Recently,single-atom catalysts(SACs)have been proposed to effectively enhance the kinetics of these two reactions.In this minireview,we focus on the recent progress in SACs for OER and HER applications.Three classes of SACs have been reviewed,i.e.,alloy-based SACs,carbon-based SACs and SACs supported on other compounds.Different factors affecting the activities of SACs are also highlighted,including the inherent element property,the coordination environment,the geometric structure and the loading amount of metal atoms.Finally,we summarize the current problems and directions for future development in SACs.展开更多
With comprehensive considerations of the operational safety and collection efficiency for the tracked miner collecting the seafloor poly-metallic nodules, two new improved mining paths for the miner on the deep seaflo...With comprehensive considerations of the operational safety and collection efficiency for the tracked miner collecting the seafloor poly-metallic nodules, two new improved mining paths for the miner on the deep seafloor were proposed. Compared to the conventional mining path, the design principles and superiorities of the two new paths are that the miner turning with relative long radius should avoid large sinkage and high slip, so as to ensure its operational safety, while the space between its straight-line trajectories before and after the turning is optimum, which is designed as the total width of the miner, and collect nodules as more as possible, so as to ensure its collection efficiency. To realize the new mining paths, theoretical designs and quantitative calculations were carried out to determine the exact positions for the speed controls of the miner during its whole operation process. With the new dynamic model of the miner, and through regulations of the speeds of the left and right tracks of the miner on the exact motion positions according to the theoretical calculations, the two new improved mining paths for the miner on the seafloor were successfully simulated, thus the turning radius of the miner in the simulation is about 21.8 m, while the distance between the straight-line trajectories before and after the turning is about 5.2 m. The dynamic simulation results preliminarily prove the feasibility of these two new mining paths, and further can provide important theoretical guidance and useful technical reference for the practical tracked miner operation and control on the seafloor.展开更多
A new insight into the microstructural stability was proposed in Ni-based single crystal superalloys with Ru addition,and the element segregation behavior atγ/γ′interface was investigated by three-dimensional atom ...A new insight into the microstructural stability was proposed in Ni-based single crystal superalloys with Ru addition,and the element segregation behavior atγ/γ′interface was investigated by three-dimensional atom probe technology(3D-APT).After standard heat treatment,it was found that Ru addition barely altered the element partitioning coefficient betweenγmatrix andγ′phase,and no element-segregation layer was observed atγ/γ′interface.During the heat exposure at 1100°C,Ru addition obviously promoted the rafting of theγ′precipitates and inhibited the precipitation of topological close-packed(TCP)phases.It was more important that an element-segregation layer containing Re,Co,and Cr was formed in theγmatrix close to theγ/γ′interface due to an“uphill diffusion”effect,and its concentration was obviously reduced after Ru addition.Finally,the microstructural stability based on the element segregation behavior atγ/γ′interface was discussed.This element-segregation layer increased theγ/γ′interfacial energy by increasing the absolute value of the lattice misfit ofγ/γ′interface to promote the rafting of theγ′precipitates after Ru addition.On the other hand,the decrease of the segregation concentration of Re,Co,and Cr elements as TCP phase-forming elements near theγ/γ′interface due to a“reverse partitioning”effect inhibits the precipitation of TCP phases in Ni-based single crystal superalloys after Ru addition.展开更多
The recently introduced even-odd rule has been shown to successfully represent chemical structures of ions and molecules. While comparing available drawings in the scientific literature with the list of compounds pred...The recently introduced even-odd rule has been shown to successfully represent chemical structures of ions and molecules. While comparing available drawings in the scientific literature with the list of compounds predicted by the even-odd rule, it became however obvious that existing compounds are fewer than expected. Several predicted compounds involving many covalent bonds have apparently never been experimentally observed. Neutral oxygen for instance is expected to have 6 valence electrons, whereas oxygen can only build a maximum of two bonds, as in water. This specificity is observed for elements in the top-right corner of the periodic table. For compounds to contain only single covalent bonds, and thus follow the even-odd rule, further explanations are necessary. The present paper proposes that those specific elements experience a transfer of electrons from the valence shell into the inner shell, making them unavailable for further bonding. These elements will be described as organic, hereby providing a clear and hopefully unifying definition of the term. In opposition, inorganic elements have a constant inner shell no matter their electrical state or the number of bonds they maintain. More than 70 compounds involving 11 elements of the main group are studied, revealing a progression from fully inorganic elements at the left of the periodic table to fully organic elements. The transition between inorganic or organic elements is made of few elements that take an organic form when negatively charged;they are labelled semi-organic. The article concludes that the fully organic elements of the main group are Oxygen and Fluorine, whereas semi-organic elements are more numerous: C, N, S, Cl, Se, Br and I. Thus, the even-odd rule becomes fully compatible with scientific knowledge of compounds in liquid or gaseous phase.展开更多
The microwave-induced thermoacoustic imaging(TAI)technology has both the advantages of high contrast of microwave imaging and high resolution of ultrasound imaging(UI),so it has carried out exploratory application res...The microwave-induced thermoacoustic imaging(TAI)technology has both the advantages of high contrast of microwave imaging and high resolution of ultrasound imaging(UI),so it has carried out exploratory application research in various areas,such as the early detection of breast tumors and cerebrovascular diseases.However,the microwave generator used in the traditional TAI technology is huge and expensive,and the temporal resolution is also too low due to the single-element scanning mechanism.Thus,it is difficult to meet the needs of clinical applications.In this paper,the iterative process and the analysis of related application scenarios from single-element scanning to portable and array-based TAI,such as the miniaturized microwave generator,handheld antenna,multi-channel data acquisition,and UI/TAIdual-modality imaging,are reviewed,and the future trends of this technology are discussed.This review helps researchers in the field of TAI learn the technological development process and future trends.It also deepens clinicians’understanding of TAI so as to put forward more application requirements.展开更多
As an excellent optical device,photodetectors have many important applications,such as communication technology,display technology,scientific measurement,fire monitoring,aerospace and biomedical research,and ifs of gr...As an excellent optical device,photodetectors have many important applications,such as communication technology,display technology,scientific measurement,fire monitoring,aerospace and biomedical research,and ifs of great significance in the research of nanotechnology and optoelectronics.Graphene,as the first two-dimensional(2D)single-element nanomaterial,has the advantages of high carrier mobility,high strength,high light transmittance and excellent thermal conductivity,and ifs widely used in various nano-optical devices.The great success of graphene has led scientists to extensive research on other 2D single-element nanomaterials.Recently,a group of novel 2D single-element nanomaterials have attracted a lot of attention from scientists because of its excellent physical,chemical,electronic,mechanical and optical properties.Furthermore,it has opened a new door for the realization of new and efficient photodetectors.The group of 2D single-element nanomaterials are called 2D-Xenes and used to make high-performance photodetectors.Currently,there are few studies on photodetectors based on 2D-Xenes,but some 2D-Xenes have been applied to photodetectors and reported.Some of these have excellent photodetection performance,such as high photoresponsivity(R),broad spectral response range,fast photoresponse speed and high specific detectivity(D).Based on the novel 2D-Xenes,this review explores the types and preparation methods of 2D-Xenes,and the working mechanisms of 2D-Xenes photodetectors.Finally,the challenges and development trends of 2D-Xenes in the future are discussed.The research of 2D-Xenes is of great significance for the development of high-performance photodetectors in the future,and is expected to be widely used in other nanoelectronics and optical devices.展开更多
文摘Electrochemical water splitting is regarded as the most promising approach to produce hydrogen.However,the sluggish electrochemical reactions occurring at the anode and cathode,namely,the oxygen evolution reaction(OER)and the hydrogen evolution reaction(HER),respectively,consume a tremendous amount of energy,seriously hampering its wide application.Recently,single-atom catalysts(SACs)have been proposed to effectively enhance the kinetics of these two reactions.In this minireview,we focus on the recent progress in SACs for OER and HER applications.Three classes of SACs have been reviewed,i.e.,alloy-based SACs,carbon-based SACs and SACs supported on other compounds.Different factors affecting the activities of SACs are also highlighted,including the inherent element property,the coordination environment,the geometric structure and the loading amount of metal atoms.Finally,we summarize the current problems and directions for future development in SACs.
基金Project(DYXM-115-04-02-01) supported by the National Deep-sea Technology Project of Development and Research, ChinaProject(2011QNZT058) supported by the Fundamental Research Funds for the Central Universities, ChinaProject(51105386) supported by the National Natural Science Foundation of China
文摘With comprehensive considerations of the operational safety and collection efficiency for the tracked miner collecting the seafloor poly-metallic nodules, two new improved mining paths for the miner on the deep seafloor were proposed. Compared to the conventional mining path, the design principles and superiorities of the two new paths are that the miner turning with relative long radius should avoid large sinkage and high slip, so as to ensure its operational safety, while the space between its straight-line trajectories before and after the turning is optimum, which is designed as the total width of the miner, and collect nodules as more as possible, so as to ensure its collection efficiency. To realize the new mining paths, theoretical designs and quantitative calculations were carried out to determine the exact positions for the speed controls of the miner during its whole operation process. With the new dynamic model of the miner, and through regulations of the speeds of the left and right tracks of the miner on the exact motion positions according to the theoretical calculations, the two new improved mining paths for the miner on the seafloor were successfully simulated, thus the turning radius of the miner in the simulation is about 21.8 m, while the distance between the straight-line trajectories before and after the turning is about 5.2 m. The dynamic simulation results preliminarily prove the feasibility of these two new mining paths, and further can provide important theoretical guidance and useful technical reference for the practical tracked miner operation and control on the seafloor.
基金funded by the National Science and Technol-ogy Major Project(Nos.2017-VI-0002-0072,2019-VI-0020-0135)the National Natural Science Foundation of China(Nos.51771148,52071263,52031012)+2 种基金the Key Research and Development Program of Shaanxi Province(Nos.2020ZDLGY13-02,2023-YBGY-432)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JC-13)the Research Fund of the State Key Labora-tory of Solidification Processing(NPU),China(No.2021-QZ-03).
文摘A new insight into the microstructural stability was proposed in Ni-based single crystal superalloys with Ru addition,and the element segregation behavior atγ/γ′interface was investigated by three-dimensional atom probe technology(3D-APT).After standard heat treatment,it was found that Ru addition barely altered the element partitioning coefficient betweenγmatrix andγ′phase,and no element-segregation layer was observed atγ/γ′interface.During the heat exposure at 1100°C,Ru addition obviously promoted the rafting of theγ′precipitates and inhibited the precipitation of topological close-packed(TCP)phases.It was more important that an element-segregation layer containing Re,Co,and Cr was formed in theγmatrix close to theγ/γ′interface due to an“uphill diffusion”effect,and its concentration was obviously reduced after Ru addition.Finally,the microstructural stability based on the element segregation behavior atγ/γ′interface was discussed.This element-segregation layer increased theγ/γ′interfacial energy by increasing the absolute value of the lattice misfit ofγ/γ′interface to promote the rafting of theγ′precipitates after Ru addition.On the other hand,the decrease of the segregation concentration of Re,Co,and Cr elements as TCP phase-forming elements near theγ/γ′interface due to a“reverse partitioning”effect inhibits the precipitation of TCP phases in Ni-based single crystal superalloys after Ru addition.
文摘The recently introduced even-odd rule has been shown to successfully represent chemical structures of ions and molecules. While comparing available drawings in the scientific literature with the list of compounds predicted by the even-odd rule, it became however obvious that existing compounds are fewer than expected. Several predicted compounds involving many covalent bonds have apparently never been experimentally observed. Neutral oxygen for instance is expected to have 6 valence electrons, whereas oxygen can only build a maximum of two bonds, as in water. This specificity is observed for elements in the top-right corner of the periodic table. For compounds to contain only single covalent bonds, and thus follow the even-odd rule, further explanations are necessary. The present paper proposes that those specific elements experience a transfer of electrons from the valence shell into the inner shell, making them unavailable for further bonding. These elements will be described as organic, hereby providing a clear and hopefully unifying definition of the term. In opposition, inorganic elements have a constant inner shell no matter their electrical state or the number of bonds they maintain. More than 70 compounds involving 11 elements of the main group are studied, revealing a progression from fully inorganic elements at the left of the periodic table to fully organic elements. The transition between inorganic or organic elements is made of few elements that take an organic form when negatively charged;they are labelled semi-organic. The article concludes that the fully organic elements of the main group are Oxygen and Fluorine, whereas semi-organic elements are more numerous: C, N, S, Cl, Se, Br and I. Thus, the even-odd rule becomes fully compatible with scientific knowledge of compounds in liquid or gaseous phase.
基金supported in part by the National Key Research and Development Program of China under Grant No.2018YFB1801503National Natural Science Foundation of China under Grants No.61931006,No.82071940,No.62101111,No.U20A20212,No.61921002,and No.U1930127+1 种基金Fundamental Research Funds for the Central Universities under Grants No.ZYGX2020ZB011 and No.ZYGX2019J013Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China under Grants No.ZYGX2021YGLH205 and No.ZYGX2021YGLH216.
文摘The microwave-induced thermoacoustic imaging(TAI)technology has both the advantages of high contrast of microwave imaging and high resolution of ultrasound imaging(UI),so it has carried out exploratory application research in various areas,such as the early detection of breast tumors and cerebrovascular diseases.However,the microwave generator used in the traditional TAI technology is huge and expensive,and the temporal resolution is also too low due to the single-element scanning mechanism.Thus,it is difficult to meet the needs of clinical applications.In this paper,the iterative process and the analysis of related application scenarios from single-element scanning to portable and array-based TAI,such as the miniaturized microwave generator,handheld antenna,multi-channel data acquisition,and UI/TAIdual-modality imaging,are reviewed,and the future trends of this technology are discussed.This review helps researchers in the field of TAI learn the technological development process and future trends.It also deepens clinicians’understanding of TAI so as to put forward more application requirements.
基金The research was partially supported by the Financial supports from the Science and Technology Development Fund(Nos.007/2017/A1 and 132/2017/A3)Macao Special Administration Region(SAR),China,and the National Natural Science Foundation of China(Nos.61875138,61435010,and 61961136001)+1 种基金Guangdong Natural Science Foundation of China(No.2019A1515010007)Science,and Technology Innovation Commission of Shenzhen(Nos.JCYJ20190808175605495,JCYJ20170811093453105).Authors also acknowledge the support from Instrum ental Analysis Center of Shenzhen University(Xili Campus).
文摘As an excellent optical device,photodetectors have many important applications,such as communication technology,display technology,scientific measurement,fire monitoring,aerospace and biomedical research,and ifs of great significance in the research of nanotechnology and optoelectronics.Graphene,as the first two-dimensional(2D)single-element nanomaterial,has the advantages of high carrier mobility,high strength,high light transmittance and excellent thermal conductivity,and ifs widely used in various nano-optical devices.The great success of graphene has led scientists to extensive research on other 2D single-element nanomaterials.Recently,a group of novel 2D single-element nanomaterials have attracted a lot of attention from scientists because of its excellent physical,chemical,electronic,mechanical and optical properties.Furthermore,it has opened a new door for the realization of new and efficient photodetectors.The group of 2D single-element nanomaterials are called 2D-Xenes and used to make high-performance photodetectors.Currently,there are few studies on photodetectors based on 2D-Xenes,but some 2D-Xenes have been applied to photodetectors and reported.Some of these have excellent photodetection performance,such as high photoresponsivity(R),broad spectral response range,fast photoresponse speed and high specific detectivity(D).Based on the novel 2D-Xenes,this review explores the types and preparation methods of 2D-Xenes,and the working mechanisms of 2D-Xenes photodetectors.Finally,the challenges and development trends of 2D-Xenes in the future are discussed.The research of 2D-Xenes is of great significance for the development of high-performance photodetectors in the future,and is expected to be widely used in other nanoelectronics and optical devices.