A mimicry honeypot framework based on game theory is presented in our work, which can calculate the equilibrium strategy of the deceptive game using non-cooperative incomplete dynamic game theory, and make decisions f...A mimicry honeypot framework based on game theory is presented in our work, which can calculate the equilibrium strategy of the deceptive game using non-cooperative incomplete dynamic game theory, and make decisions for the mimicry framework to deploy the simple service, the honeypot and the fake honeypot. A mimicry prototype is implemented using NS2 platform, and simulation experiments are launched to validate the decision-making result and the deceptive performance of the mimicry honeypot. The empirical study shows that the mimicry honeypot framework based on game theory can be able to influence the equilibrium strategy results by dynamically changing the deployment vector of the mimicry system. It validates that the mimicry honeypot framework has better flexibility, activeness and fraudulence than the traditional honeypot.展开更多
Telecommunications and information technology rapidly migrate towards the Future Internet (FI) era, which is characterized by powerful and complex network infrastructures, advanced applications, services and content, ...Telecommunications and information technology rapidly migrate towards the Future Internet (FI) era, which is characterized by powerful and complex network infrastructures, advanced applications, services and content, efficient power management as well as extensions in the business model. One of the main application areas that find prosper ground in the FI era, is medicine. In particular, latest advances in medical sciences are reflected on their capability to approach previously past-cure diseases, as well as to prevent the appearance and evolution of unpleasant situations. Those advances are often derived from interdisciplinary solutions to complex medical problems, supported by communications and electronics, which target fast, reliable and stable solutions to problems that are demanding in terms of velocity and accuracy. The goal of this paper is to present intelligent, knowledge-based management functionality capable of supporting emergency medical applications. An indicative emergency medical scenario is provided, along with extensive simulation results using the Network Simulator-2 (NS-2), for evaluating the performance of the proposed functionality.展开更多
The Internet of thing(IoT)is a growing concept for smart cities,and it is compulsory to communicate data between different networks and devices.In the IoT,communication should be rapid with less delay and overhead.For...The Internet of thing(IoT)is a growing concept for smart cities,and it is compulsory to communicate data between different networks and devices.In the IoT,communication should be rapid with less delay and overhead.For this purpose,flooding is used for reliable data communication in a smart cities concept but at the cost of higher overhead,energy consumption and packet drop etc.This paper aims to increase the efficiency in term of overhead and reliability in term of delay by using multicasting and unicasting instead of flooding during packet forwarding in a smart city using the IoT concept.In this paper,multicasting and unicasting is used for IoT in smart cities within a receiver-initiated mesh-based topology to disseminate the data to the cluster head.Smart cities networks are divided into cluster head,and each cluster head or core node will be responsible for transferring data to the desired receiver.This protocol is a novel approach according to the best of our knowledge,and it proves to be very useful due to its efficiency and reliability in smart cities concept because IoT is a collection of devices and having a similar interest for transmission of data.The results are implemented in Network simulator 2(NS-2).The result shows that the proposed protocol shows performance in overhead,throughput,packet drop,delay and energy consumption as compared to benchmark schemes.展开更多
针对在8/16位低速处理器上实现传输控制协议(Transfer Control Protocol TCP)过于复杂的问题,通过对TCP协议进行简化,减轻了微处理器的运算负担,降低了对系统存储空间的要求,使得TCP协议能够在8/16位低速处理器上实现.嵌入式网络中大量...针对在8/16位低速处理器上实现传输控制协议(Transfer Control Protocol TCP)过于复杂的问题,通过对TCP协议进行简化,减轻了微处理器的运算负担,降低了对系统存储空间的要求,使得TCP协议能够在8/16位低速处理器上实现.嵌入式网络中大量使用长度很小的数据帧,使得网络带宽利用率极低,为此在协议中应用了Na-gle算法,减少了协议所需带宽,提高了协议的吞吐率.采用NS-2(Network Simulator-2)进行的仿真结果表明:该方案是有效的,现已经在普通8位处理器上实现,并通过了在多种宽带网络上进行的测试,在网络电能表中得到了实际应用.展开更多
基金Supported by the National Natural Science Foundation of China(61309024)the Funding of Shanghai Key Laboratory of Financial Information Technology
文摘A mimicry honeypot framework based on game theory is presented in our work, which can calculate the equilibrium strategy of the deceptive game using non-cooperative incomplete dynamic game theory, and make decisions for the mimicry framework to deploy the simple service, the honeypot and the fake honeypot. A mimicry prototype is implemented using NS2 platform, and simulation experiments are launched to validate the decision-making result and the deceptive performance of the mimicry honeypot. The empirical study shows that the mimicry honeypot framework based on game theory can be able to influence the equilibrium strategy results by dynamically changing the deployment vector of the mimicry system. It validates that the mimicry honeypot framework has better flexibility, activeness and fraudulence than the traditional honeypot.
文摘Telecommunications and information technology rapidly migrate towards the Future Internet (FI) era, which is characterized by powerful and complex network infrastructures, advanced applications, services and content, efficient power management as well as extensions in the business model. One of the main application areas that find prosper ground in the FI era, is medicine. In particular, latest advances in medical sciences are reflected on their capability to approach previously past-cure diseases, as well as to prevent the appearance and evolution of unpleasant situations. Those advances are often derived from interdisciplinary solutions to complex medical problems, supported by communications and electronics, which target fast, reliable and stable solutions to problems that are demanding in terms of velocity and accuracy. The goal of this paper is to present intelligent, knowledge-based management functionality capable of supporting emergency medical applications. An indicative emergency medical scenario is provided, along with extensive simulation results using the Network Simulator-2 (NS-2), for evaluating the performance of the proposed functionality.
文摘The Internet of thing(IoT)is a growing concept for smart cities,and it is compulsory to communicate data between different networks and devices.In the IoT,communication should be rapid with less delay and overhead.For this purpose,flooding is used for reliable data communication in a smart cities concept but at the cost of higher overhead,energy consumption and packet drop etc.This paper aims to increase the efficiency in term of overhead and reliability in term of delay by using multicasting and unicasting instead of flooding during packet forwarding in a smart city using the IoT concept.In this paper,multicasting and unicasting is used for IoT in smart cities within a receiver-initiated mesh-based topology to disseminate the data to the cluster head.Smart cities networks are divided into cluster head,and each cluster head or core node will be responsible for transferring data to the desired receiver.This protocol is a novel approach according to the best of our knowledge,and it proves to be very useful due to its efficiency and reliability in smart cities concept because IoT is a collection of devices and having a similar interest for transmission of data.The results are implemented in Network simulator 2(NS-2).The result shows that the proposed protocol shows performance in overhead,throughput,packet drop,delay and energy consumption as compared to benchmark schemes.
基金This work was supported in part by National Natural Science Foundation of China (60425413)in part by COMSATS Institute of Information Technology, Pakistan
文摘针对在8/16位低速处理器上实现传输控制协议(Transfer Control Protocol TCP)过于复杂的问题,通过对TCP协议进行简化,减轻了微处理器的运算负担,降低了对系统存储空间的要求,使得TCP协议能够在8/16位低速处理器上实现.嵌入式网络中大量使用长度很小的数据帧,使得网络带宽利用率极低,为此在协议中应用了Na-gle算法,减少了协议所需带宽,提高了协议的吞吐率.采用NS-2(Network Simulator-2)进行的仿真结果表明:该方案是有效的,现已经在普通8位处理器上实现,并通过了在多种宽带网络上进行的测试,在网络电能表中得到了实际应用.