期刊文献+
共找到382篇文章
< 1 2 20 >
每页显示 20 50 100
Large-eddy simulation of the flow past both finite and infinite circular cylinders at Re=3900 被引量:16
1
作者 张蕙 杨建民 +1 位作者 肖龙飞 吕海宁 《Journal of Hydrodynamics》 SCIE EI CSCD 2015年第2期195-203,共9页
The flow past a finite circular cylinder with a height-to-diameter ratio of 1.5 and an infinite circular cylinder of the same diameter at a Reynolds number Re= 3 900 is investigated using the large eddy simulation(LE... The flow past a finite circular cylinder with a height-to-diameter ratio of 1.5 and an infinite circular cylinder of the same diameter at a Reynolds number Re= 3 900 is investigated using the large eddy simulation(LES). The objective of the present study is to explore the differences of the flow mechanisms between the finite and infinite circular cylinders. It is shown that the free end of the finite circular cylinders affects the wake region significantly. The mean drag coefficient and the fluctuating lift coefficient of the finite circular cylinder are smaller than those of the infinite circular cylinder. The three-dimensional separation and the separated shear layer instability of the finite circular cylinder can obviously be observed. The existence of an arch vortex in the average flow downstream of the free end is demonstrated. 展开更多
关键词 large-eddy simulationles circular cylinder vortex shedding
原文传递
A general framework for verification and validation of large eddy simulations 被引量:12
2
作者 XING Tao 《Journal of Hydrodynamics》 SCIE EI CSCD 2015年第2期163-175,共13页
A general framework(methodology and procedures) for verification and validation(V&V) of large eddy simulations in computational fluid dynamics(CFD) is derived based on two hypotheses. The framework allows for q... A general framework(methodology and procedures) for verification and validation(V&V) of large eddy simulations in computational fluid dynamics(CFD) is derived based on two hypotheses. The framework allows for quantitative estimations of numerical error, modeling error, their coupling, and the associated uncertainties. To meet different needs of users based on their affordable computational cost, various large eddy simulation(LES) V&V methods are proposed. These methods range from the most sophisticated seven equation estimator to the simplest one-grid estimator, which will be calibrated using factors of safety to achieve the objective reliability and confidence level. Evaluation, calibration and validation of various LES V&V methods in this study will be performed using rigorous statistical analysis based on an extensive database. Identification of the error sources and magnitudes has the potential to improve existing or derive new LES models. Based on extensive parametric studies in the database, it is expected that guidelines for performing large eddy simulations that meet pre-specified quality and credibility criteria can be obtained. Extension of this framework to bubbly flow is also discussed. 展开更多
关键词 FRAMEWORK verification and validation large eddy simulationles
原文传递
APPLICATION OF LBM-SGS MODEL TO FLOWS IN A PUMPING-STATION FOREBAY 被引量:12
3
作者 TANG Xue-lin WANG Wu-chang +3 位作者 WANG Fu-jun YU Xin CHEN Zhi-cong SHI Xiao-yan 《Journal of Hydrodynamics》 SCIE EI CSCD 2010年第2期196-206,共11页
A 2-D Lattice Boltzmann Method(LBM) coupled with a Sub-Grid Stress(SGS) model is proposed and validated by flows around a non-submerged spur dike in a channel.And then the LBM-SGS model is further applied to flows... A 2-D Lattice Boltzmann Method(LBM) coupled with a Sub-Grid Stress(SGS) model is proposed and validated by flows around a non-submerged spur dike in a channel.And then the LBM-SGS model is further applied to flows in a pumping-station forebay.Shallow water equations are numerically solved by the LBM and the turbulence can be taken into account and modeled efficiently by the Large Eddy Simulation(LES) model.The bounce-back scheme of the non-equilibrium part of the distribution function is used at the inlet boundary,the normal gradient of the distribution function is set as zero at the outlet boundary and the bounce-back scheme is applied to the solid wall to ensure non-slip boundary conditions.Firstly,the model successfully predicts the flow characteristics around a spur dike,such as circulating flow,velocity and water depth distributions.The results are verified by the experimental data and compared to the results obtained by conventional Smagoringsky Model(SM) of LES.Finally,the LBM-SGS model is used to further predict the flow characteristics in a forebay,such as secondary flow and water level.The comparisons show that the model scheme has the capacity to simulate complex flows in shallow water with reasonable accuracy and reliability. 展开更多
关键词 2-D flow shallow water equation Lattice Boltzmann Method(LBM) Large Eddy simulationles non-submerged spur dike pumping-station forebay
原文传递
LES method of the tip clearance vortex cavitation in a propelling pump with special emphasis on the cavitation-vortex interaction 被引量:13
4
作者 Cheng-zao Han Shun Xu +2 位作者 Huai-yu Cheng Bin Ji Zhi-yuan Zhang 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第6期1212-1216,共5页
The turbulent cavitating flow around the propelling pump tip clearance is numerically simulated using the large eddy simulation(LES)method coupled with the Zwart-Gerber-Belamri(ZGB)cavitation model to investigate the ... The turbulent cavitating flow around the propelling pump tip clearance is numerically simulated using the large eddy simulation(LES)method coupled with the Zwart-Gerber-Belamri(ZGB)cavitation model to investigate the cavitation-vortex interaction mechanism.The calculated cavitation structures around the blades are in a remarkable agreement with the experimental results.The distributions of the tip clearance vortex under two cavitation conditions are obtained and compared.The results show that the cavitation development enhances the vorticity generation and the flow unsteadiness around the tip clearance of a propelling pump.Vortices are basically located around the cavitation areas,particularly in the tip clearance region,during the cavitation.The relative vorticity transport equation is applied for the cavitating turbulent flows and it is further indicated that the vortex stretching term makes the main contribution in the vortex production,and the baroclinic torque and dilation terms are important source terms for the vorticity generation in the cavitating flow.In addition,the viscous diffusion term and the Coriolis force term are significant in modifying the vorticity field inside the blade tip clearance. 展开更多
关键词 Tip-clearance cavitation propelling pump large eddy simulation(les) vorticity transport equation
原文传递
环形燃烧室两相喷雾燃烧的大涡模拟 被引量:8
5
作者 颜应文 赵坚行 +1 位作者 张靖周 刘勇 《航空动力学报》 EI CAS CSCD 北大核心 2006年第5期824-830,共7页
在三维任意曲线坐标系下采用欧拉-拉格朗日两相大涡模拟方法对环形燃烧室火焰筒气液两相紊流瞬态反应流进行数值模拟。采用椭圆偏微分方程生成三维贴体网格,计算中所采用的数学度模型有:k方程亚网格尺度模型估算亚网格紊流粘性;亚网格EB... 在三维任意曲线坐标系下采用欧拉-拉格朗日两相大涡模拟方法对环形燃烧室火焰筒气液两相紊流瞬态反应流进行数值模拟。采用椭圆偏微分方程生成三维贴体网格,计算中所采用的数学度模型有:k方程亚网格尺度模型估算亚网格紊流粘性;亚网格EBU燃烧模型估算化学反应速率;热通量辐射模型估算辐射换热。并在非交错网格体系下气相采用SIMPLE算法和混合差分格式求解,液相采用随机离散模型(Stachastic Separated Flow,简称SSF),在拉格朗日坐标系下追踪各油珠群沿各自轨道运动、质量损失及能量变化。通过计算结果与实验数据相比较,表明在三维贴体坐标系下对燃烧室火焰筒两相紊流油雾燃烧流场进行大涡模拟,采用欧拉-拉格朗日两相大涡模拟方法能反映两相紊流化学反应流流动及实际燃烧过程。 展开更多
关键词 航空 航天推进系统 欧拉-拉格朗日两相大涡模拟 贴体网格 k方程亚网格尺度模型 亚网 格EBU燃烧模型
下载PDF
Wall-modeling for large-eddy simulation of flows around an axisymmetric body using the diffuse-interface immersed boundary method 被引量:9
6
作者 Beiji SHI Xiaolei YANG +2 位作者 Guodong JIN Guowei HE Shizhao WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第3期305-320,共16页
A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equ... A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results. 展开更多
关键词 WALL model large-eddy simulation(les) immersed boundary(IB)method diffuse-interface
下载PDF
Numerical and experimental studies of hydraulic noise induced by surface dipole sources in a centrifugal pump 被引量:9
7
作者 刘厚林 戴菡葳 +3 位作者 丁剑 谈明高 王勇 黄浩钦 《Journal of Hydrodynamics》 SCIE EI CSCD 2016年第1期43-51,共9页
The influences of the four different surface dipole sources in a centrifugal pump on the acoustic calculating accuracy are studied in this paper, by using the CFD combined with the Lighthill acoustic analogy methods. ... The influences of the four different surface dipole sources in a centrifugal pump on the acoustic calculating accuracy are studied in this paper, by using the CFD combined with the Lighthill acoustic analogy methods. Firstly, the unsteady flow in the pump is solved based on the large eddy simulation method and the pressure pulsations on the four different surfaces are obtained. The four surfaces include the volute surface, the discharge pipe surface, the inner surface of the pump cavity, and the interfaces between the impeller and the stationary parts as well as the outer surface of the impeller. Then, the software Sysnoise is employed to interpolate the pressure fluctuations onto the corresponding surfaces of the acoustic model. The Fast Fourier Transform with a Hanning window is used to analyze the pressure fluctuations and transform them into the surface dipole sources. The direct boundary element method is applied to calculate the noise radiated from the dipole sources. And the predicted sound pressure level is compared with the experimental data. The results show that the pressure fluctuations on the discharge pipe surface and the outer surface of the impeller have little effect on the acoustic simulation results. The pressure pulsations on the inner surface of the pump cavity play an important role in the internal flow and the acoustic simulation. The acoustic calculating error can be reduced by about 7% through considering the effect of the pump cavity. The sound pressure distributions show that the sound pressure level increases with the growing flow rate, with the largest magnitude at the tongue zone. 展开更多
关键词 centrifugal pump noise large eddy simulationles dipole source experiment
原文传递
Large eddy simulation of hydrogen/air scramjet combustion using tabulated thermo-chemistry approach 被引量:7
8
作者 Cao Changmin Ye Taohong Zhao Majie 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1316-1327,共12页
Large eddy simulations (LES) have been performed to investigate the flow and combustion fields in the scramjet of the German Aerospace Center (DLR). Turbulent combustion is mod- eled by the tabulated thermo-chemis... Large eddy simulations (LES) have been performed to investigate the flow and combustion fields in the scramjet of the German Aerospace Center (DLR). Turbulent combustion is mod- eled by the tabulated thermo-chemistry approach in combination with the presumed probability density function (PDF). A/3-function is used to model the distribution of the mixture fraction, while two different PDFs, g-function (Model I) and //-function (Model II), are applied to model the reaction progress. Temperature is obtained by solving filtered energy transport equation and the reaction rate of the progress variable is rescaled by pressure to consider the effects of compressibil- ity. The adaptive mesh refinement (AMR) technique is used to properly capture shock waves, boundary layers, shear layers and flame structures. Statistical results of temperature and velocity predicted by Model II show better accuracy than that predicted by Model I. The results of scatter points and mixture fraction-conditional variables indicate the significant differences between Model I and Model II. It is concluded that second moment information in the presumed PDF of the reaction progress is very important in the simulation of supersonic combustion. It is also found that an unstable flame with extinction and ignition develops in the shear layers of bluff body and a fuel- rich partially premixed flame stabilizes in the central recirculation bubble. 展开更多
关键词 Large eddy simulationles Presumed probability densityfunction (PDF) Scram jet Tabulated thermo-chemistry Turbulent combustion model
原文传递
Numerical Study on Flow-induced Noise for a Steam Stop-valve Using Large Eddy Simulation 被引量:8
9
作者 Jiming Liu Tao Zhang Yong'ou Zhang 《Journal of Marine Science and Application》 2013年第3期351-360,共10页
The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field ... The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field was investigated with Lighthill's acoustic analogy based on the properties of the flow field obtained using a large-eddy simulation that employs the LES-WALE dynamic model as the sub-grid-scale model.Firstly,the validation of mesh was well conducted,illustrating that two million elements were sufficient in this situation.Secondly,the treatment of the steam was deliberated,and conclusions indicate that when predicting the flow-induced noise of the stop-valve,the steam can be treated as incompressible gas at a low inlet velocity.Thirdly,the flow-induced noises under different inlet velocities were compared.The findings reveal it has remarkable influence on the flow-induced noises.Lastly,whether or not the heat preservation of the wall has influence on the noise was taken into account.The results show that heat preservation of the wall had little influence. 展开更多
关键词 flow-induced noise steam stop-valve flow field sound field large eddy simulationles computational fluid dynamics(CFD) ACTRAN
下载PDF
High-fidelity numerical simulation of unsteady cavitating flow around a hydrofoil 被引量:2
10
作者 Nan Xie Yu-meng Tang Yang-wei Liu 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第1期1-16,共16页
Cavitation is a widespread and detrimental phenomenon in hydraulic machinery, therefore, it requires to be accurately predicted. In this study, large eddy simulation (LES), scale-adaptive simulation (SAS) and grid-ada... Cavitation is a widespread and detrimental phenomenon in hydraulic machinery, therefore, it requires to be accurately predicted. In this study, large eddy simulation (LES), scale-adaptive simulation (SAS) and grid-adaptive simulation (GAS) are employed to investigate the unsteady cavitating flow around a NACA0009 hydrofoil. The prediction accuracy of GAS, SAS, both using the shear-stress transport (SST) k — ω model as baseline turbulence model, is validated by comparing with experimental and LES results. The cavity behaviors and turbulence fields are analyzed systematically. Results show that the GAS gives a more reasonable turbulent viscosity and accurately predicts the periodic evolution of typical vortical structures of cavitating flow, such as tip leakage vortex cavitation, tip separation vortex cavitation, leading-edge cavitation, and trailing-edge vortex. The time-averaged cavity volume, volume fluctuation amplitude, and characteristic frequencies of cavities predicted by the GAS are very closed to the LES, while the SAS fails to accurately capture these cavity characteristics. Furthermore, the local trace criterion is applied to extract the vortical structures and to analyze the swirling patterns of the tip leakage vortex. Multi-scale vortical structures in LES are well identified by local trace criterion. The prediction accuracy of the SAS method for small-scale vortical structures, such as the vortex shedding on the suction side and the vortex rope around the tip leakage vortex, is obviously insufficient, while the GAS has a higher accuracy in predicting vortex shedding. The tip leakage vortex and induced vortex extracted from GAS are also closer to that of LES in both swirling patterns and scale. 展开更多
关键词 Tip leakage vortex cavitation leading-edge cavitation large eddy simulation(les) grid-adaptive simulation scale-adaptive simulation
原文传递
Some notes on numerical simulation of the turbulent cavitating flow with a dynamic cubic nonlinear sub-grid scale model in OpenFOAM 被引量:7
11
作者 Zi-yang Wang Xian-bei Huang +1 位作者 Huai-yu Cheng Bin Ji 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第4期790-794,共5页
The accuracy of large eddy simulation(LES)is highly dependent on the performance of sub-grid scale(SGS)model.In the present paper,a dynamic cubic nonlinear sub-grid scale model(DCNM)proposed by Huang et al.is implemen... The accuracy of large eddy simulation(LES)is highly dependent on the performance of sub-grid scale(SGS)model.In the present paper,a dynamic cubic nonlinear sub-grid scale model(DCNM)proposed by Huang et al.is implemented for the simulation of unsteady cavitating flow around a 3-D Clark-Y hydrofoil in OpenFOAM.Its performance in predicting the evolution of cloud cavitation is discussed in detail.The simulation with a linear model,the dynamic Smagorinsky model(DSM),is also conducted as a comparison.The results with DCNM show a better agreement with the available experimental observation.The comparison between DCNM and DSM further suggests that the DCNM is able to predict the backscatter more precisely,which is an important feature in LES.The characteristics of DCNM is analyzed to account for its advantages in the prediction of unsteady cloud cavitation as well.The results reveal that it is the nonlinear terms of DCNM that makes DCNM capture sub-grid scale vortices better and more suitable for studying the transient behaviors of cloud cavitation than DSM. 展开更多
关键词 CAVITATION large eddy simulation(les) nonlinear sub-grid scale model OPENFOAM
原文传递
Wall-modeled large-eddy simulation of noise generated by turbulence around an appended axisymmetric body of revolution 被引量:6
12
作者 Zhi-teng Zhou Zhao-yue Xu +1 位作者 Shi-zhao Wang Guo-wei He 《Journal of Hydrodynamics》 SCIE EI CSCD 2022年第4期533-554,共22页
The directivity of the noise generated by turbulent flows around an underwater vehicle(the fully appended SUBOFF body)is investigated numerically,where the turbulent flows are simulated by using the large eddy simulat... The directivity of the noise generated by turbulent flows around an underwater vehicle(the fully appended SUBOFF body)is investigated numerically,where the turbulent flows are simulated by using the large eddy simulation(LES)with a non-equilibrium wall model and the noise is calculated by using the Ffowcs Williams and Hawking formulation.The wall-modeled LES reproduces the features of turbulent flows around SUBOFF,such as the attached boundary layers around the hull,separated vortices from appendages and the wrapped vortices in wakes.The coefficients and power spectral density of the wall pressures obtained are in agreement with the previous numerical results and experimental measurements.It is found that the constructive and destructive interferences of lift and side-force dipoles lead to the deviations of the directivities of instantaneous sound pressures from the lift directions.This is different from noise generated by flows around a circular cylinder,where lift dipoles dominate the radiated noise. 展开更多
关键词 Large eddy simulation(les) turbulence-generated noise axisymmetric body of revolution SUBOFF
原文传递
Large eddy simulation of turbulent flow structure and characteristics in an annular jet pump 被引量:5
13
作者 徐茂森 杨雪龙 +1 位作者 龙新平 吕桥 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第4期702-715,共14页
The large eddy simulation(LES) of the flow characteristics in an annular jet pump(AJP) is conducted, and the flow characteristics are systematically analyzed from both time-averaged and instantaneous aspects. The ... The large eddy simulation(LES) of the flow characteristics in an annular jet pump(AJP) is conducted, and the flow characteristics are systematically analyzed from both time-averaged and instantaneous aspects. The jet expansion, the velocity distribution and the energy are considered to analyze the time-averaged evolution of the flow field in the AJP. The transient flow characteristics can also be acquired from the analysis of the turbulence intensity and the Reynolds stress. The simulation demonstrates that in the time-averaged characteristics, the potential cores increase linearly with the increase of the flow ratio. With the flow development, the jet half-width gradually increases and the residual energy coefficient decreases. Compared with the distribution of the time-averaged axial velocity, that of the instantaneous velocity is more complex and disorderly. The high intensity of the axial turbulence mainly occurs in the mixing layer and the near-wall regions of the diffuser. The annular distribution of the Reynolds stress is mainly in the mixing layer and the recirculation region. There is a low-stress zone between the mixing layer and the high-stress region in the wall-boundary layer. The intensity of the spanwise vortexes is larger than that of the streamwise vortexes, and therefore, the former make greater contribution to the total vorticity. This research provides a better understanding of the flow characteristics in the AJP. 展开更多
关键词 Annular jet pump large eddy simulationles flow characteristics vortex
原文传递
Sensitivity Simulations of the 30 March 2020 Xichang Wildfire in Southwest China Based on the WRF-Fire Model
14
作者 Yujue LIU Shiguang MIAO Hanbin ZHANG 《Journal of Meteorological Research》 SCIE CSCD 2024年第4期826-843,共18页
This paper describes a fire forecast system—Weather Research and Forecasting-Fire(WRF-Fire)—that is employed to simulate a real wildfire case in Xichang,Sichuan Province,Southwest China on 30 March 2020 at a 100-m r... This paper describes a fire forecast system—Weather Research and Forecasting-Fire(WRF-Fire)—that is employed to simulate a real wildfire case in Xichang,Sichuan Province,Southwest China on 30 March 2020 at a 100-m resolution over the fire area,in order to provide a fine representation of the terrain and fuel heterogeneities and explicitly resolve the atmospheric turbulence.Four sensitivity experiments were conducted to analyze the impacts of atmospheric model grid spacing and fire–atmosphere interaction on simulated meteorological fields and fire behavior.The results indicate that finer horizontal grid spacing in the atmospheric model improves the accuracy of wind,temperature,and moisture simulations in the near surface layer.Especially,it can better describe local wind field characteristics,capture microscale wind speed fluctuations,and produce more significant effect from fire–atmosphere interaction.The mass and energy released by the fire model and its feedback to the atmospheric model exhibit enhanced heterogeneous characteristics.The simulated fire area aligns well with the observation,with KAPPA coefficient(KC)of 0.56–0.59 and spatial correlation coefficient(SC) of 0.52–0.59.For this real case,the influence of heterogeneous land surface on the fire behavior is much greater than the atmosphere–fire interaction.The study suggests that WRFFire holds high potential as a real wildfire simulation tool,offering a new and feasible approach for fire prediction. 展开更多
关键词 Weather Research and Forecasting-Fire WILDFIRE coupled fire–atmosphere modeling fire behavior large-eddy simulation(les)
原文传递
Large eddy simulation study of 3D wind field in a complex mountainous area under different boundary conditions
15
作者 Yan LI Lei YAN Xuhui HE 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第7期541-556,共16页
Large eddy simulations generally are used to predict 3D wind field characteristics in complex mountainous areas.Certain simulation boundary conditions,such as the height and length of the computational domain or the c... Large eddy simulations generally are used to predict 3D wind field characteristics in complex mountainous areas.Certain simulation boundary conditions,such as the height and length of the computational domain or the characteristics of inflow turbulence,can significantly impact the quality of predictions.In this study,we examined these boundary conditions within the context of the mountainous terrain around a long-span cable-stayed bridge using a wind tunnel experiment.Various sizes of computational domains and turbulent incoming wind velocities were used in large eddy simulations.The results show that when the height of the computational domain is five times greater than the height of the terrain model,there is minimal influence from the top wall on the wind field characteristics in this complex mountainous area.Expanding the length of the wake region of the computational domain has negligible effects on the wind fields.Turbulence in the inlet boundary reduces the length of the wake region on a leeward hill with a low slope,but has less impact on the mean wind velocity of steep hills. 展开更多
关键词 Large eddy simulation(les) Spectral representation method Recycling method High mountainous canyon Wind characteristics Atmospheric boundary layer Computational domain
原文传递
Vortex identification based on the Liutex method and its effect on fish passage upstream
16
作者 Chun-ying Shen Rui-guo Yang +2 位作者 Xiao-tao Shi Ming-ming Wang Shi-hua He 《Journal of Hydrodynamics》 SCIE EI CSCD 2024年第1期130-141,共12页
Fishway research is important for mitigating the fragmentation of river habitats caused by hydraulic projects.The vertical slit fishway is a broadly used fishway type because of its high efficiency and adaptability to... Fishway research is important for mitigating the fragmentation of river habitats caused by hydraulic projects.The vertical slit fishway is a broadly used fishway type because of its high efficiency and adaptability to water levels.However,the resulting vortex current disrupts the fish passage hence directly affecting fish migration.This study aims to accurately capture the vortex structure in the fishway and analyze the effect of vortex elements(vortex structure,vortex intensity,etc.)on fish.We conducted an analysis of the 3-D current flow field in the fishway through the utilization of an experimental model and the large eddy simulation(LES)method.Moreover,we captured the vortex information in the fishway at different flow rates using the Liutex vortex identification method and investigated the effect of the vortex on fish migration.The results revealed that the structures inside the fishway pool occupy most of the room,however,the areas with higher vortex strength were primarily located in the vortex near the vertical seam and the mainstream,the vortex strength inside the fishway gradually increases with increasing flow,suppressing fish migration.Fish experienced significantly increased resistance when encountering strong vortices.This suggests that the vortex may act as a physical barrier to fish migration.These findings highlight the potential negative effects of vortex on fish movement and reiterate the importance of understanding vortex dynamics for aquatic environmental management.As an effective tool for identifying vortices in fluid flow,the Liutex method demonstrates features of vortex within the fishway,thereby providing important insights into the interaction between fluid dynamics and aquatic organisms. 展开更多
关键词 Vertical slit fishway vortex identification method Liutex large eddy simulation(les) fish experiment computational fluid dynamics
原文传递
Turbulence Statistics of Thermo-Buoyancy Supercritical Fuel Flow in a Regenerative Cooling Channel
17
作者 SUN Feng XIE Gongnan 《Journal of Thermal Science》 SCIE EI CSCD 2024年第1期126-137,共12页
Active regenerative cooling with supercritical hydrocarbon fuel is considered as the most promising thermal protection method.The existence of buoyancy force would lead to strongly anisotropic flow and thermal transpo... Active regenerative cooling with supercritical hydrocarbon fuel is considered as the most promising thermal protection method.The existence of buoyancy force would lead to strongly anisotropic flow and thermal transport characteristics.It is closely related to the cooling performance of the engine.To elucidate the mechanisms of turbulent transport,the large eddy simulation(LES) was performed to assess turbulence statistics within different turbulence scales.The results indicated that the buoyancy and inertial force together dominated the change of turbulent structure.Moreover,the spatial thermal buoyancy effect significantly suppressed the vertical velocity fluctuation.This is due to the laminar motion caused by the buoyancy force,thereby weakening the thermal transport.For the statistics of velocity fluctuation,it was found that the buoyancy force and inertial force greatly weaken the vertical and streamwise velocity fluctuation,respectively.For the statistics of thermal transport,the results pointed out that the near-wall heat transport characteristics need to be paid more attention.The thickness of the temperature mixing boundary layer led to the attenuation of vertical heat flux,which inhibited vertical temperature diffusion and predisposed to extreme conditions of heat transfer deterioration.The results can enhance the academic understanding of the heat transfer mechanism of supercritical fluids,and give guidance for further applications of thermal protection. 展开更多
关键词 active regenerative cooling large eddy simulation(les) buoyancy force turbulence statistics
原文传递
THE CALCULATION OF THE PROFILE-LINEAR AVERAGE VELOCITY IN THE TRANSITION REGION FOR ULTRASONIC HEAT METER BASED ON THE METHOD OF LES 被引量:4
18
作者 LIU Yong-hui DU Guang-sheng TAO Li-li SHEN Fang 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第1期89-94,共6页
The measurement accuracy of an ultrasonic heat meter depends on the relationship of the profile-linear average velocity.There are various methods for the calculation of the laminar and turbulence flow regions,but few ... The measurement accuracy of an ultrasonic heat meter depends on the relationship of the profile-linear average velocity.There are various methods for the calculation of the laminar and turbulence flow regions,but few methods for the transition region.At present,the traditional method to deal with the transition region is to adopt the relationship for the turbulent flow region.In this article,a simplified model of the pipe is used to study the characteristics of the transition flow with specific Reynolds number.The k-εmodel and the Large Eddy Simulation(LES)model are,respectively,used to calculate the flow field of the transition region,and a comparison with the experiment results shows that the LES model is more effective than the k-εmodel,it is also shown that there will be a large error if the relationship based on the turbulence flow is used to calculate the profile-linear average velocity relationship of the transition flow.The profile-linear average velocity for the Reynolds number ranging from 5 300 to 10 000 are calculated,and the relationship curve is obtained.The results of this article can be used to improve the measurement accuracy of ultrasonic heat meter and provide a theoretical basis for the research of the whole transition flow. 展开更多
关键词 ultrasonic heat meter Large Eddy simulationles model profile average velocity linear average velocity PIPE
原文传递
A high-fidelity design methodology using LES-based simulation and POD-based emulation:A case study of swirl injectors 被引量:4
19
作者 Xingjian WANG Shiang-Ting YEH +1 位作者 Yu-Hung CHANG Vigor YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第9期1855-1869,共15页
Engineering design is undergoing a paradigm shift from design for performance to design for affordability, operability, and durability, seeking multi-objective optimization. To facilitate this transformation, signific... Engineering design is undergoing a paradigm shift from design for performance to design for affordability, operability, and durability, seeking multi-objective optimization. To facilitate this transformation, significantly extended design freedom and knowledge must be available in the early design stages. This paper presents a high-fidelity framework for design and optimization of the liquid swirl injectors that are widely used in aerospace propulsion and power-generation systems. The framework assembles a set of techniques, including Design Of Experiment(DOE), high-fidelity Large Eddy Simulations(LES), machine learning, Proper Orthogonal Decomposition(POD)-based Kriging surrogate modeling(emulation), inverse problem optimization, and uncertainty quantification. LES-based simulations can reveal detailed spatiotemporal evolution of flow structures and flame dynamics in a high-fidelity manner, and identify important injector design parameters according to their effects on propellant mixing, flame stabilization, and thermal protection.For a given a space of design parameters, DOE determines the number of design points to perform LES-based simulations. POD-based emulations, trained by the LES database, can effectively explore the design space and deduce an optimal group of design parameters in a turn-around time that is reduced by three orders of magnitude. The accuracy of the emulated results is validated, and the uncertainty of prediction is quantified. The proposed design methodology is expected to profoundly extend the knowledge base and reduce the cost for initial design stages. 展开更多
关键词 EMULATION High-fidelity design KRIGING Large Eddy simulationles Proper Orthogonal Decomposition(POD) Swirl injector
原文传递
Five-equation and robust three-equation methods for solution verification of large eddy simulation 被引量:4
20
作者 Rabijit Dutta Tao Xing 《Journal of Hydrodynamics》 SCIE EI CSCD 2018年第1期23-33,共11页
This study evaluates the recently developed general framework for solution verification methods for large eddy simulation(LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 3... This study evaluates the recently developed general framework for solution verification methods for large eddy simulation(LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 395 on eight systematically refined grids.The seven-equation method shows that the coupling error based on Hypothesis I is much smaller as compared with the numerical and modeling errors and therefore can be neglected. The authors recommend five-equation method based on Hypothesis II, which shows a monotonic convergence behavior of the predicted numerical benchmark(S_C), and provides realistic error estimates without the need of fixing the orders of accuracy for either numerical or modeling errors. Based on the results from seven-equation and five-equation methods, less expensive three and four-equation methods for practical LES applications were derived. It was found that the new three-equation method is robust as it can be applied to any convergence types and reasonably predict the error trends. It was also observed that the numerical and modeling errors usually have opposite signs, which suggests error cancellation play an essential role in LES. When Reynolds averaged Navier-Stokes(RANS) based error estimation method is applied, it shows significant error in the prediction of S_C on coarse meshes. However, it predicts reasonable S_C when the grids resolve at least 80% of the total turbulent kinetic energy. 展开更多
关键词 Large eddy simulationles OPENFOAM periodic channel flow solution verification
原文传递
上一页 1 2 20 下一页 到第
使用帮助 返回顶部