Crop type is one of main factors influencing weed community structure. However, the identity of weed communities associated with the cultivation of different crops in farmlands remains largely unclear. A field survey ...Crop type is one of main factors influencing weed community structure. However, the identity of weed communities associated with the cultivation of different crops in farmlands remains largely unclear. A field survey of weed seed banks was conducted in 2 280 fields at 228 sites of 62 locations representing three different types of farmland(95 paddy, 73 summer-ripe, and 60 autumn-ripe farmlands) along the bank of the Yangtze River in Anhui Province, China. A total of 43 families and 174 species of weeds were found in these weed seed banks. A comparison of the composition of weed groups in the seed banks showed that the species number and density percentage of grass, sedge and broadleaf weed groups were similar among the different types of farmland. The seed banks of all three farmland types shared 71 common weed species, accounting for 40.80% of the total number of species. These common weeds, which were both associated and not associated with crops, accounted for 91.71% of the total dominance degree among all farmland types. The crop-associated weed species were distributed in all soil layers of each farmland type. The Shannon-Wiener index H′(description of species diversity which is more sensitive to dense species) and Pielou's evenness index J(description of species evenness) in summer-ripe farmland were similar to those in autumn-ripe farmland but differed from those in paddy farmland. However, the Simpson's index D(description of species diversity which is more sensitive to sparse species) was similar among all three farmland types. The results of similarity comparison indicated that although the aboveground weed community differed among the different cropping patterns, the weed species composition in the soil seed bank was still similar. Consequently, our results demonstrate that after the implementation of long-term monoculture patterns, weed species compositions in the soil seed bank in different farmlands become homogenized regardless of the crop type.展开更多
The diversity, population structure and regeneration status of woody species were studied at Xobe and Shorobe Villages in northern Botswana. A total of 130 and 111 quadrats of 20 × 20 m size were laid down at 50 ...The diversity, population structure and regeneration status of woody species were studied at Xobe and Shorobe Villages in northern Botswana. A total of 130 and 111 quadrats of 20 × 20 m size were laid down at 50 m intervals along parallel line transects at Xobe and Shorobe, respectively. A total of 46 woody species, 27 from Xobe and 41 from Shorobe were recorded. Of the 46 woody species, only 22 were recorded at both sites. Ten genera and six families were found only in Shorobe while one genus and one family were found only in Xobe. The diversity and evenness of woody species were 1.5 and 0.5 in Xobe, respectively, and 2.18 and 0.6 in Shorobe, respectively. The similarities of woody species in terms of richness of species, genera and families at the two sites were about 50%, 54% and 56%, respectively. The mean densities of woody species were 2745.7 ± 1.35 and 4269.7 ± 36 individuals ha-1 at Xobe and Shorobe, respectively. Despite differences in absolute numbers, the total mean densities of woody species at both sites did not exhibit significant (P = 0.35) differences. At both sites, woody species were dominated by individuals of only a few species, which also exhibited the highest values of important value index. The population structure patterns of the woody species were categorized into five groups. The species in the first group exhibited reverse J-shaped distribution, which indicates stable population structures. The species in the second group showed relatively good recruitment but the regeneration is negatively affected. The species in the other three groups exhibited hampered regeneration as a result of disturbances caused by humans, domestic animals and annual fires. The parameters assessed indicate the need for attention and appropriate management interventions by the relevant national authorities at various levels.展开更多
The characteristics of arbuscular mycorrhizal fungal (AMF) community structure in various soil depths and growing seasons of watermelon (Citrullus vulgaris) grown in commercial greenhouses in Daxing of Beijing and Wei...The characteristics of arbuscular mycorrhizal fungal (AMF) community structure in various soil depths and growing seasons of watermelon (Citrullus vulgaris) grown in commercial greenhouses in Daxing of Beijing and Weifang and Laiyang of Shandong, China were investigated using both morphological identification and denaturing gradient gel electrophoresis. The sampled soils had been used for continuous greenhouse production of watermelon for 0, 5, 10, 15, or 20 years. Glomus claroideum was the dominant species in the greenhouse soils planted for 5, 10, and 15 years in Laiyang, while Glomus mosseae and Glomus etunicatum were dominant in the nearby open farmland soil. Sorenson's similarity index of AMF community composition ranged from 0.67 to 0.84 in the soils planted for 5 years, and from 0.29 to 0.33 for 20 years among the three locations. Spore abundance, species richness, and the Shannon index were highest near the soil surface (0-10 cm) and decreased with soil depth, and higher in June and October than in August and December. Canonical correspondence analysis showed that available P and the number of years that soil had been used for greenhouse production were the main factors contributing to the variance of AMF community composition. It was concluded that the community structure of AMF was mainly influenced by soil available P and planting time of watermelon as well as by soil depth and seasonal variation in the commercial greenhouse.展开更多
Aims The process of facilitation,where a species increases the survival,growth,and fitness of another species,is becoming increasingly recognized as a critical factor in shaping the structure of plant communities.This...Aims The process of facilitation,where a species increases the survival,growth,and fitness of another species,is becoming increasingly recognized as a critical factor in shaping the structure of plant communities.This process is particularly important in stressful environments.Yet few studies have attempted to incorporate positive interactions into community ecological theories such as the neutral theory of biodiversity.Here,we use an equalizing trade-off model as a foundation to study the potential impact of facilitation on species richness and community temporal turnover.Methods Based on a spatially explicit birth–death trade-off model,we assume that the occurrence of facilitation is dependent on the presence of interspecific neighbours.We further propose that the realized birth rate for a given individual subject to facilitation is proportional to the number of interspecific neighbours within its neighbourhood.Thus,in our model,the individuals of rare species will benefit more from the existence of heterospecific individuals than common species.Important Findings As the facilitative coefficient increased,the species richness for simulated communities at the dynamically stochastic equilibrium was also increasing.Simulations also demonstrated that facilitation could increase the replacement of species through time:communities with facilitation become more dissimilar(i.e.have smaller Bray–Curtis similarity values)than communities without or with a lower degree of facilitation after the same time interval.Facilitation from interspecific neighbours on rare species increased their population sizes and consequently made them less prone to extinction,thus enhancing species richness.Meanwhile,in a saturated community,with the increase of species richness,mean population size of entire communities decreased,making species more prone to extinction on average,and thus increased the community temporal turnover.Our results suggest that future experimental work on the effect of facilitation on community-level properties 展开更多
Soil seed banks can provide a mechanistic for understanding the recruitment dynamics and can inform conservation management of ecosystems. To investigate the contribution of soil seed banks to vegetation restoration i...Soil seed banks can provide a mechanistic for understanding the recruitment dynamics and can inform conservation management of ecosystems. To investigate the contribution of soil seed banks to vegetation restoration in moving sand dune systems, we compared seed structure and species similarity between soil seed banks and standing vegetation among moving sand dunes, ecotones and dune slacks in northeast China. Average seed density in dune slacks was greater than in ecotones or moving sand dunes. Seed density in the soil layer of 0-10 cm was greater than at 10-20 cm both in the moving sand dunes and the eco- tones, but seed densities were similar at depths of 10-20 and 20-30 cm in moving sand dunes. Moreover, the spatial autocorrelation of seed density on moving sand dunes was weak but was strong on the ecotones and dune slacks. The species in the soil seed bank of moving sand dune systems were nearly all annuals, and the low similarity was mainly due to the lack of perennial species that were common in standing vegetation. Consequently, vegetation restoration cannot mainly rely on the soil seed banks in the movingsand dunes and more attention should be paid to protection of the dune slacks because they are the main source of seed disperse and seedling recruitment in moving sand dune systems.展开更多
基金financially supported by the National Natural Science Foundation of China(31500350)the National Key Research and Development Program of China(2016YFD0200805)
文摘Crop type is one of main factors influencing weed community structure. However, the identity of weed communities associated with the cultivation of different crops in farmlands remains largely unclear. A field survey of weed seed banks was conducted in 2 280 fields at 228 sites of 62 locations representing three different types of farmland(95 paddy, 73 summer-ripe, and 60 autumn-ripe farmlands) along the bank of the Yangtze River in Anhui Province, China. A total of 43 families and 174 species of weeds were found in these weed seed banks. A comparison of the composition of weed groups in the seed banks showed that the species number and density percentage of grass, sedge and broadleaf weed groups were similar among the different types of farmland. The seed banks of all three farmland types shared 71 common weed species, accounting for 40.80% of the total number of species. These common weeds, which were both associated and not associated with crops, accounted for 91.71% of the total dominance degree among all farmland types. The crop-associated weed species were distributed in all soil layers of each farmland type. The Shannon-Wiener index H′(description of species diversity which is more sensitive to dense species) and Pielou's evenness index J(description of species evenness) in summer-ripe farmland were similar to those in autumn-ripe farmland but differed from those in paddy farmland. However, the Simpson's index D(description of species diversity which is more sensitive to sparse species) was similar among all three farmland types. The results of similarity comparison indicated that although the aboveground weed community differed among the different cropping patterns, the weed species composition in the soil seed bank was still similar. Consequently, our results demonstrate that after the implementation of long-term monoculture patterns, weed species compositions in the soil seed bank in different farmlands become homogenized regardless of the crop type.
文摘The diversity, population structure and regeneration status of woody species were studied at Xobe and Shorobe Villages in northern Botswana. A total of 130 and 111 quadrats of 20 × 20 m size were laid down at 50 m intervals along parallel line transects at Xobe and Shorobe, respectively. A total of 46 woody species, 27 from Xobe and 41 from Shorobe were recorded. Of the 46 woody species, only 22 were recorded at both sites. Ten genera and six families were found only in Shorobe while one genus and one family were found only in Xobe. The diversity and evenness of woody species were 1.5 and 0.5 in Xobe, respectively, and 2.18 and 0.6 in Shorobe, respectively. The similarities of woody species in terms of richness of species, genera and families at the two sites were about 50%, 54% and 56%, respectively. The mean densities of woody species were 2745.7 ± 1.35 and 4269.7 ± 36 individuals ha-1 at Xobe and Shorobe, respectively. Despite differences in absolute numbers, the total mean densities of woody species at both sites did not exhibit significant (P = 0.35) differences. At both sites, woody species were dominated by individuals of only a few species, which also exhibited the highest values of important value index. The population structure patterns of the woody species were categorized into five groups. The species in the first group exhibited reverse J-shaped distribution, which indicates stable population structures. The species in the second group showed relatively good recruitment but the regeneration is negatively affected. The species in the other three groups exhibited hampered regeneration as a result of disturbances caused by humans, domestic animals and annual fires. The parameters assessed indicate the need for attention and appropriate management interventions by the relevant national authorities at various levels.
基金Supported by the National Natural Science Foundation of China (No. 30871737)the Open Fund of State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (No. Y052010038)the Qingdao Municipal Natural Science Foundation of China (No. 08-1-3-20-jch)
文摘The characteristics of arbuscular mycorrhizal fungal (AMF) community structure in various soil depths and growing seasons of watermelon (Citrullus vulgaris) grown in commercial greenhouses in Daxing of Beijing and Weifang and Laiyang of Shandong, China were investigated using both morphological identification and denaturing gradient gel electrophoresis. The sampled soils had been used for continuous greenhouse production of watermelon for 0, 5, 10, 15, or 20 years. Glomus claroideum was the dominant species in the greenhouse soils planted for 5, 10, and 15 years in Laiyang, while Glomus mosseae and Glomus etunicatum were dominant in the nearby open farmland soil. Sorenson's similarity index of AMF community composition ranged from 0.67 to 0.84 in the soils planted for 5 years, and from 0.29 to 0.33 for 20 years among the three locations. Spore abundance, species richness, and the Shannon index were highest near the soil surface (0-10 cm) and decreased with soil depth, and higher in June and October than in August and December. Canonical correspondence analysis showed that available P and the number of years that soil had been used for greenhouse production were the main factors contributing to the variance of AMF community composition. It was concluded that the community structure of AMF was mainly influenced by soil available P and planting time of watermelon as well as by soil depth and seasonal variation in the commercial greenhouse.
基金National Natural Science Foundation of China(31000199,30970543,30770360,41021091)the Fundamental Research Funds for the Central Universities(lzujbky-2012-133,lzujbky-2009-88,lzujbky-2010-49)+2 种基金the Youth Innovation Research Fund for Interdisciplince of Lanzhou University(LZUJC200915)the Department of Zoology,University of Cambridge(to M.D.F.E.)the European Research Council(the European Community’s Seventh Framework Programme FP7/2007-2013 to F.T.M./ERC grant agreement no.242658[BIOCOM]).
文摘Aims The process of facilitation,where a species increases the survival,growth,and fitness of another species,is becoming increasingly recognized as a critical factor in shaping the structure of plant communities.This process is particularly important in stressful environments.Yet few studies have attempted to incorporate positive interactions into community ecological theories such as the neutral theory of biodiversity.Here,we use an equalizing trade-off model as a foundation to study the potential impact of facilitation on species richness and community temporal turnover.Methods Based on a spatially explicit birth–death trade-off model,we assume that the occurrence of facilitation is dependent on the presence of interspecific neighbours.We further propose that the realized birth rate for a given individual subject to facilitation is proportional to the number of interspecific neighbours within its neighbourhood.Thus,in our model,the individuals of rare species will benefit more from the existence of heterospecific individuals than common species.Important Findings As the facilitative coefficient increased,the species richness for simulated communities at the dynamically stochastic equilibrium was also increasing.Simulations also demonstrated that facilitation could increase the replacement of species through time:communities with facilitation become more dissimilar(i.e.have smaller Bray–Curtis similarity values)than communities without or with a lower degree of facilitation after the same time interval.Facilitation from interspecific neighbours on rare species increased their population sizes and consequently made them less prone to extinction,thus enhancing species richness.Meanwhile,in a saturated community,with the increase of species richness,mean population size of entire communities decreased,making species more prone to extinction on average,and thus increased the community temporal turnover.Our results suggest that future experimental work on the effect of facilitation on community-level properties
基金supported by National Natural Science Foundation of China(41271115)
文摘Soil seed banks can provide a mechanistic for understanding the recruitment dynamics and can inform conservation management of ecosystems. To investigate the contribution of soil seed banks to vegetation restoration in moving sand dune systems, we compared seed structure and species similarity between soil seed banks and standing vegetation among moving sand dunes, ecotones and dune slacks in northeast China. Average seed density in dune slacks was greater than in ecotones or moving sand dunes. Seed density in the soil layer of 0-10 cm was greater than at 10-20 cm both in the moving sand dunes and the eco- tones, but seed densities were similar at depths of 10-20 and 20-30 cm in moving sand dunes. Moreover, the spatial autocorrelation of seed density on moving sand dunes was weak but was strong on the ecotones and dune slacks. The species in the soil seed bank of moving sand dune systems were nearly all annuals, and the low similarity was mainly due to the lack of perennial species that were common in standing vegetation. Consequently, vegetation restoration cannot mainly rely on the soil seed banks in the movingsand dunes and more attention should be paid to protection of the dune slacks because they are the main source of seed disperse and seedling recruitment in moving sand dune systems.