期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
基于SimAM-YOLOv4的自动驾驶目标检测算法 被引量:6
1
作者 刘丽伟 侯德彪 +2 位作者 侯阿临 梁超 郑贺伟 《长春工业大学学报》 CAS 2022年第3期244-250,共7页
针对自动驾驶场景下单阶段目标检测对小目标精度不足的问题,权衡精度与速度的共同需求,提出一种改进的YOLOv4目标检测算法。首先,在网络的残差模块中嵌入SimAM注意力模块,旨在提高网络对重要特征的提取能力,然后,利用ACON-C激活函数替... 针对自动驾驶场景下单阶段目标检测对小目标精度不足的问题,权衡精度与速度的共同需求,提出一种改进的YOLOv4目标检测算法。首先,在网络的残差模块中嵌入SimAM注意力模块,旨在提高网络对重要特征的提取能力,然后,利用ACON-C激活函数替换残差模块中的Mish激活函数,使残差模块可以自适应地激活,进而提升网络性能。在KITTI数据集上进行训练和测试,实验结果表明,该模型的平均精度均值达到91.16%,检测速度达到32帧/s,满足实时检测的要求。 展开更多
关键词 目标检测 YOLOv4 simam注意力模块 ACON-C
下载PDF
改进YOLOv7的无人机视角下复杂环境目标检测算法
2
作者 张润梅 肖钰霏 +5 位作者 贾振楠 陈中 陈梓华 袁彬 曹炜威 宋娓娓 《光电工程》 CAS CSCD 北大核心 2024年第5期83-93,共11页
针对无人机在航拍过程中容易受到恶劣环境的影响,导致航拍图像出现辨识度低、被障碍物遮挡、特征严重丢失等问题,提出了一种改进YOLOv7的无人机视角下复杂环境的目标检测算法(SSG-YOLOv7)。首先从VisDrone2019数据集和RSOD数据集中分别... 针对无人机在航拍过程中容易受到恶劣环境的影响,导致航拍图像出现辨识度低、被障碍物遮挡、特征严重丢失等问题,提出了一种改进YOLOv7的无人机视角下复杂环境的目标检测算法(SSG-YOLOv7)。首先从VisDrone2019数据集和RSOD数据集中分别抽取图片进行五种环境的模拟,将VisDrone数据集扩充至12803张,RSOD数据集扩充至1320张。其次,聚类出更适合数据集的锚框尺寸。接着将3D无参注意力机制SimAM引入主干网络和特征提取模块中,增加模型的学习能力。然后重构特征提取模块SPPCSPC,融合不同尺寸池化通道提取的信息同时引入轻量级的卷积模块GhostConv,在不增加模型参数量的同时提高算法对密集多尺度目标检测精度。最后使用Soft NMS优化锚框的置信度,减少算法的误检、漏检率。实验结果表明,在复杂环境的检测任务中SSG-YOLOv7检测效果优良,性能指标VisDrone_mAP@0.5和RSOD_mAP@0.5较YOLOv7分别提高了10.45%和2.67%。 展开更多
关键词 无人机 复杂环境 YOLOv7 simam注意力机制 SPPCSPC 数据增强
下载PDF
基于YOLOv5s−FSW模型的选煤厂煤矸检测研究
3
作者 燕碧娟 王凯民 +3 位作者 郭鹏程 郑馨旭 董浩 刘勇 《工矿自动化》 CSCD 北大核心 2024年第5期36-43,66,共9页
针对现有煤矸检测模型存在的特征提取不充分、参数量大、检测精度低且实时性差等问题,提出了一种基于YOLOv5s−FSW模型的选煤厂煤矸检测方法。该模型在YOLOv5s的基础上进行改进,首先将主干网络的C3模块替换为FasterNet Block结构,通过降... 针对现有煤矸检测模型存在的特征提取不充分、参数量大、检测精度低且实时性差等问题,提出了一种基于YOLOv5s−FSW模型的选煤厂煤矸检测方法。该模型在YOLOv5s的基础上进行改进,首先将主干网络的C3模块替换为FasterNet Block结构,通过降低模型的参数量和计算量提高检测速度;然后,在颈部网络引入无参型SimAM注意力机制,增强模型对复杂环境下重要目标的关注,进一步提高模型的特征提取能力;最后,在输出端用Wise−IoU替换CIoU边界框损失函数,使模型聚焦普通质量锚框,提高收敛速度和边框的检测精度。消融实验结果表明:与YOLOv5s模型相比,YOLOv5s−FSW模型的平均精度均值(mAP)提高了1.9%,模型权重减少了0.6 MiB,参数量减少了4.7%,检测速度提高了19.3%。对比实验结果表明:YOLOv5s−FSW模型的mAP达95.8%,较YOLOv5s−CBC,YOLOv5s−ASA,YOLOv5s−SDE模型分别提高了1.1%,1.5%和1.2%,较YOLOv5m,YOLOv6s模型分别提高了0.3%,0.6%;检测速度达36.4帧/s,较YOLOv5s−CBC,YOLOv5s−ASA模型分别提高了28.2%和20.5%,较YOLOv5m,YOLOv6s,YOLOv7模型分别提高了16.3%,15.2%,45.0%。热力图可视化实验结果表明:YOLOv5s−FSW模型对煤矸目标特征区域更加敏感且关注度更高。检测实验结果表明:在环境昏暗、图像模糊、目标相互遮挡的复杂场景下,YOLOv5s−FSW模型对煤矸目标检测的置信度得分高于YOLOv5s模型,且有效避免了误检和漏检现象的发生。 展开更多
关键词 煤矸检测 YOLOv5s FasterNet Block simam注意力机制 Wise−IoU边界框损失函数
下载PDF
基于改进YOLOv8的针灸用针缺陷检测算法
4
作者 罗顺 王衍宁 欧阳八生 《无损检测》 CAS 2024年第7期61-67,共7页
一次性针灸用针由于尺寸小,生产过程中易漏检微小缺陷。针对该问题,基于YOLOv8提出一种改进算法。首先,在Neck部分添加提取小目标的特征层,将更丰富的浅层特征传递到新增的小目标检测头;其次,在主干网络和特征融合网络之间嵌入SimAM注... 一次性针灸用针由于尺寸小,生产过程中易漏检微小缺陷。针对该问题,基于YOLOv8提出一种改进算法。首先,在Neck部分添加提取小目标的特征层,将更丰富的浅层特征传递到新增的小目标检测头;其次,在主干网络和特征融合网络之间嵌入SimAM注意力机制,提高检测的准确性和鲁棒性;最后,使用MPDIoU边界损失函数代替CIoU损失函数,提升网络的边界框回归性能。试验结果表明,改进模型对实际生产收集的数据集的平均精度为95.6%,检测速度为30.8 FPS,对于针灸用针缺陷检测具有实际应用价值。 展开更多
关键词 缺陷检测 YOLOv8 微小缺陷 simam注意力机制 MPDIoU
下载PDF
基于改进的YOLOv5网络的舌象检测算法
5
作者 张杨 辛国江 +1 位作者 王鑫 朱磊 《计算机技术与发展》 2024年第2期156-162,共7页
针对目前舌象检测模型在自然状态下对舌象检测存在的误检和漏检的问题,以收集的舌象为研究对象,提出了一种基于YOLOv5的自然状态下的舌象检测算法。首先,将原有的SiLU激活函数替换为ReLu激活函数,减少指数运算,加速舌象检测网络收敛;然... 针对目前舌象检测模型在自然状态下对舌象检测存在的误检和漏检的问题,以收集的舌象为研究对象,提出了一种基于YOLOv5的自然状态下的舌象检测算法。首先,将原有的SiLU激活函数替换为ReLu激活函数,减少指数运算,加速舌象检测网络收敛;然后,利用Ghost轻量化模块技术,大幅降低舌象检测网络的参数量;最后,将SimAm注意力机制融入特征提取网络获取舌象特征,从多维度融合舌象特征,降低自然环境对舌象特征提取的影响。得到一个轻量化的舌象检测模型,在自制的数据集上分析可知:轻量化检测模型参数量达到7.8 MB,检测的精度达到96.6%,同时每秒处理帧数高达86帧,更适合自然状态下舌象的采集工作。实验结果表明,改进的舌象检测网络在自制舌象数据集上,相比于其它常用检测算法,性能指标上均有不同程度提升,对舌象的检测效果更好。 展开更多
关键词 舌象检测 YOLOv5 ReLu激活函数 轻量化 simam注意力机制
下载PDF
基于改进YOLOv7的PDC钻头复合片检测
6
作者 陈琳国 熊凌 +2 位作者 代啟亮 王冬梅 李姝凡 《计算机系统应用》 2024年第2期216-223,共8页
复合片是PDC钻头的核心切削单元,复合片自动检测技术是复合片自动修复技术的基础.本文提出了一种基于改进YOLOv7的PDC钻头复合片检测方法,在YOLOv7的基础上,用深度可分离卷积替换了常规卷积,减少了参数量和运算成本;引入了SimAM注意力机... 复合片是PDC钻头的核心切削单元,复合片自动检测技术是复合片自动修复技术的基础.本文提出了一种基于改进YOLOv7的PDC钻头复合片检测方法,在YOLOv7的基础上,用深度可分离卷积替换了常规卷积,减少了参数量和运算成本;引入了SimAM注意力机制,不需要额外的参数便可以从神经元中推导出3D注意力权重,而且还能提高卷积神经网络的表达能力;用SPPFCSPC替换了SPPCSPC,在保证感受野不变的同时获得了速度的提升;采用K-means++算法聚类先验框,使用启发式算法定位出缺损的复合片.实验结果表明,本文算法较原YOLOv7模型mAP提高了2.75%,参数量减少了约80%,推理速度提高了9.12 f/s,且较其他算法也有较大优势,可实现复合片检测的工业应用. 展开更多
关键词 PDC钻头复合片 YOLOv7 深度可分离卷积 simam注意力机制 SPPFCSPC K-means++
下载PDF
融合注意力机制和先验知识的刮板输送机异常煤块检测 被引量:2
7
作者 王渊 郭卫 +3 位作者 张传伟 贺海涛 赵栓峰 路正雄 《西安科技大学学报》 CAS 北大核心 2023年第1期192-200,共9页
刮板输送机作为综采工作面的主要运输设备,运行状态直接影响生产效率。在其工作过程中,由于采煤过程产生的较大煤块,易造成板刮输送机运输过程的拥堵。然而,煤矿工作环境的恶劣、煤的颜色属性等造成大块煤的检测异常困难,为此本文提出... 刮板输送机作为综采工作面的主要运输设备,运行状态直接影响生产效率。在其工作过程中,由于采煤过程产生的较大煤块,易造成板刮输送机运输过程的拥堵。然而,煤矿工作环境的恶劣、煤的颜色属性等造成大块煤的检测异常困难,为此本文提出一种融合注意力机制和先验知识的煤矿刮板输送机异常煤块检测模型。为兼顾异常煤检测的准确性与实时性,采用YOLO v4端到端检测模型同时检测出异常煤块的类别信息;考虑到刮板输送机中包含与异常煤块无关的信息,以神经科学和空间抑制思想为基础,构建一种以能量函数为载体的注意力机制检测刮板输送机中不同区域异常煤块,提高异常煤块的检测精度;针对基于深度神经网络的异常煤块检测过多依赖数据且泛化能力较低,受人们经验学习影响的问题,提出具备特征提取的先验知识来降低模型对数据的依赖和提高模型的检测效率;构建了煤矿实际生产场景中异常煤块检测数据集。结果表明:与其他模型相比,所提出模型在测试集上的检测精度可达90.28%,相比YOLO v3和YOLO v4分别提高了5.82%和5.17%,明显优于其他模型;检测速度每秒可达28帧,满足实时检测的需求,同时验证了本文所提出注意力机制和先验知识模型的有效性。 展开更多
关键词 刮板输送机 煤块检测 目标检测 simam注意力机制 YOLO 先验知识
下载PDF
改进的SAT-YOLOv5s钢材表面缺陷检测研究
8
作者 吴方旭 宫义山 《长江信息通信》 2024年第7期68-73,共6页
工业生产中,钢材表面缺陷检测对于钢材的质量控制发挥着十分重要的作用。基于现阶段钢材表面缺陷检测精度低、漏检率高等问题。文章提出一种改进的SAT-YOLO5s算法。首先,主干网络由Cf2模块组成,并加入SAT(SimAM-Transformer)融合模块来... 工业生产中,钢材表面缺陷检测对于钢材的质量控制发挥着十分重要的作用。基于现阶段钢材表面缺陷检测精度低、漏检率高等问题。文章提出一种改进的SAT-YOLO5s算法。首先,主干网络由Cf2模块组成,并加入SAT(SimAM-Transformer)融合模块来提高多尺度特征提取;接着,我们在Neck网络中,使用亚像素卷(Sub-pixel)和SimAM无参注意力机制融合模块以提高小目标特征分辨率;最后,我们使用WIOU损失函数给小目标特征缺陷分配不同的权重,提高检测精度。在NEU-DE数据集上进行多次实验,结果表明,我们的模型检测效果优于当前YOLOv5s检测模型,mAP达到81.5%,相比原模型提高8.3%。其检测速度(FPS)为45.3,达到了实时监测的效果。我们提出的SAT-YOLOv5s算法可较有效地检测钢材表面缺陷,在实际部署上具有巨大潜力。 展开更多
关键词 钢材缺陷检测 simam注意力机制 改进的Transformer 模型融合
下载PDF
基于改进YOLOv7的无人机航拍图像目标检测
9
作者 吴旭红 赵清华 《电光与控制》 CSCD 北大核心 2024年第2期35-40,111,共7页
针对无人机捕获场景下目标尺度变化剧烈、小目标检测精度低、漏检率高等问题,提出了一种改进的YOLOv7目标检测算法。首先,在原YOLOv7基础上增加一个极小目标检测层,以适应不同尺度下的物体目标,降低小目标的漏检率;其次,在特征融合网络... 针对无人机捕获场景下目标尺度变化剧烈、小目标检测精度低、漏检率高等问题,提出了一种改进的YOLOv7目标检测算法。首先,在原YOLOv7基础上增加一个极小目标检测层,以适应不同尺度下的物体目标,降低小目标的漏检率;其次,在特征融合网络中引入无参注意力机制,并基于该注意力机制构建了一个MP-SimAM模块,使网络融合更多重要的特征信息;最后,提出了一种新的边框回归损失函数SCIoU Loss,进一步提升模型的收敛速度与检测精度。实验结果表明,该模型在VisDrone 2019数据集上表现出色,所提算法模型在测试集上mAP 50达44.0%,相比于基准模型YOLOv7提升了2.6个百分点,对于小目标的检测效果提升明显。 展开更多
关键词 YOLOv7 无人机 航拍图像 小目标检测 simam注意力机制
下载PDF
MNTH-YOLOv8:一种用于食品包装中蚊虫高效检测的深度学习方法
10
作者 王晓红 张微 《包装学报》 2024年第3期91-98,共8页
食品安全一直是社会关注的焦点,而在食品包装印刷生产过程中,蚊虫的夹杂会对食品安全构成威胁。针对食品包装质检过程中蚊虫检测仍是人工筛查的现状,以及蚊虫目标尺寸小、所处背景复杂的特点,提出了一种基于深度学习的全自动MNTH-YOLOv... 食品安全一直是社会关注的焦点,而在食品包装印刷生产过程中,蚊虫的夹杂会对食品安全构成威胁。针对食品包装质检过程中蚊虫检测仍是人工筛查的现状,以及蚊虫目标尺寸小、所处背景复杂的特点,提出了一种基于深度学习的全自动MNTH-YOLOv8检测方法。该方法是在YOLOv8强大的目标检测功能基础上,结合通道特征部分卷积模块、SimAM注意力机制和改进的特征融合模块,并以CIoU与归一化Wasserstein距离作为定位回归损失函数的优化模型。对真实数据集的检测结果表明,MNTH-YOLOv8表现出显著优势,不仅有效提高了小目标蚊虫的检测精度,还在保持检测速度的前提下减少了参数量。MNTH-YOLOv8在食品包装中蚊虫的实时检测应用上拥有广阔前景。 展开更多
关键词 食品包装安全 蚊虫检测 YOLOv8 小目标检测 simam注意力机制 特征融合 归一化Wasserstein距离
下载PDF
基于Yolov5改进的香烟目标检测
11
作者 郝涛 《长江信息通信》 2023年第8期131-133,共3页
因为吸烟引起的火灾,给人民群众生活带来了巨大伤害,针对禁烟场所香烟目标检测精度不高的问题,文章提出了一种基于Yolov5改进的目标检测模型。该模型首先在Yolov5的颈部网络中引入SimAM(Simple,Parameter-Free Attention Module)无参注... 因为吸烟引起的火灾,给人民群众生活带来了巨大伤害,针对禁烟场所香烟目标检测精度不高的问题,文章提出了一种基于Yolov5改进的目标检测模型。该模型首先在Yolov5的颈部网络中引入SimAM(Simple,Parameter-Free Attention Module)无参注意力机制,加强Yolov5的特征融合能力。其次是使用SIOU(Soft Intersection OverUnion)作为定位回归框的损失函数,提高边界框的定位精度。最终将Yolov5和改进后的模型在自建数据集作对比实验,结果表明,该模型的准确率达到89.6%,召回率(Recall)达到81.4%,平均精度(MAP)达到84.3%,与原本的Yolov5模型相比,检测效果均有了提升。 展开更多
关键词 香烟目标检测 Yolov5 simam注意力机制 SIOU损失函数
下载PDF
基于改进型YOLOv5s的安全帽检测
12
作者 于秋波 万擎 +1 位作者 胡文宇 赵宁 《微处理机》 2023年第6期50-54,共5页
针对复杂施工环境下的安全帽佩戴检测模型存在误检和漏检问题,基于YOLOv5s实验,提出一种改进型目标检测算法SH-YOLO,用于检测施工现场中安全帽的佩戴情况。SH-YOLO方法基于YOLOv5s,在Backbone层嵌入SimAM注意力机制,在Backbone与Neck连... 针对复杂施工环境下的安全帽佩戴检测模型存在误检和漏检问题,基于YOLOv5s实验,提出一种改进型目标检测算法SH-YOLO,用于检测施工现场中安全帽的佩戴情况。SH-YOLO方法基于YOLOv5s,在Backbone层嵌入SimAM注意力机制,在Backbone与Neck连接处使用SPPFCSPC方法来减少原模型的计算量和参数量。在自制的安全帽数据集上进行对比实验,结果表明,SH-YOLO对安全帽的检测精度AP分别达到95.4%,较YOLOv5s分别提升6.7%,同时保持较低的参数量和较高的帧速。 展开更多
关键词 YOLOv5算法 simam注意力机制 安全帽佩戴检测
下载PDF
基于岩屑录井图像的井壁稳定性智能预测方法
13
作者 夏文鹤 唐印东 +3 位作者 李皋 韩玉娇 林永学 吴雄军 《天然气工业》 EI CAS CSCD 北大核心 2023年第12期71-83,共13页
钻井现场通常利用岩石力学的分析结果对井壁稳定性进行预测,但其时效性普遍较差。为此,利用实时的岩屑录井图像资料建立了包括16种掉块形状和岩性的图像样本库,并以深度学习网络的高效特征提取技术为基础,建立了一种基于掉块图像特征的... 钻井现场通常利用岩石力学的分析结果对井壁稳定性进行预测,但其时效性普遍较差。为此,利用实时的岩屑录井图像资料建立了包括16种掉块形状和岩性的图像样本库,并以深度学习网络的高效特征提取技术为基础,建立了一种基于掉块图像特征的井壁失稳类型分析模型,针对钻井返出砂样图像中的掉块图像进行形状和岩性识别,以判定钻进地层和井壁失稳的类型。研究结果表明:①使用ShuffleNetV2网络作为智能系统基础架构,在单元模块中引入了XConv卷积核并行分支和SimAM注意力机制模块,强化了网络对掉块图像标志性特征信息的关注度;②对ShuffleNetV2网络中的Stage 2、Stage 3和Stage 4进行了多通道特征融合算法的设计,保留了掉块轮廓关键特征,最终改进的ShuffleNetV2网络模型对掉块形状及岩性的识别准确率为90.56%。结论认为,现场应用的效果验证了该方法的可靠性,从砂样图像输入到结果输出用时低于1 s,识别结果与地质资料以及施工过程的工况基本吻合,该方法能满足现场对井壁稳定状况快速感知的现实需求。 展开更多
关键词 岩屑录井图像 轻量化网络 单元结构 simam注意力机制 多通道特征融合 井壁稳定性
下载PDF
基于改进MaskR-CNN模型的秀珍菇表型参数自动测量方法
14
作者 周华茂 王婧 +1 位作者 殷华 陈琦 《智慧农业(中英文)》 CSCD 2023年第4期117-126,共10页
[目的/意义]秀珍菇表型是其品质和栽培环境适应性的反映,但目前人工测量表型参数耗时费力、主观性强,亟需自动化分析手段。[方法]一种基于改进Mask R-CNN的秀珍菇测量模型PG-Mask R-CNN (Pleurotus geesteranus-Mask Region-Based Convo... [目的/意义]秀珍菇表型是其品质和栽培环境适应性的反映,但目前人工测量表型参数耗时费力、主观性强,亟需自动化分析手段。[方法]一种基于改进Mask R-CNN的秀珍菇测量模型PG-Mask R-CNN (Pleurotus geesteranus-Mask Region-Based Convolutional Neural Network),提出以损伤率为指标的裂纹评价方法,并对其进行量化评价。PG-Mask R-CNN模型以Mask R-CNN为主体,通过向特征提取网络Resnet101中添加Sim AM注意力机制,在不增加原始网络参数的情况下提高网络性能;采用改进的特征金字塔进行多尺度融合,融合多层级的信息进行预测;将GIo U (Generalized Intersection over Union)边界框回归损失函数替代原有的Io U (Intersection over Union)损失函数,完善图像重叠度的计算,进一步提高模型性能。[结果和讨论] PG-Mask R-CNN模型目标检测的m AP和m AR分别为84.8%和87.7%,均高于目前主流的YOLACT (You Only Look At Coefficien Ts)、Insta Boost、Query Inst和Mask R-CNN模型;实例分割结果的MRE (Mean Relative Error)为0.90%,均低于其他实例分割模型;PG-Mask R-CNN模型的参数量为51.75 M,略大于原始的Mask R-CNN,均小于其他实例分割模型。对分割后的菌盖和裂纹进行测量,所得结果的MRE分别为1.30%和7.54%,损伤率的MAE (Mean Absolute Error)为0.14%。[结论]本研究提出的PG-Mask R-CNN模型对秀珍菇的菌柄、菌盖及裂纹识别与分割具有较高的准确率,在此基础上能够实现对秀珍菇表型参数的自动化测量,这为后续秀珍菇智慧化育种、智能栽培与分级奠定了技术基础。 展开更多
关键词 秀珍菇 Mask R-CNN simam模块 Resnet101 表型分析 改进的特征金字塔
下载PDF
基于改进ConvNeXt的皮肤镜图像分类方法 被引量:4
15
作者 李建威 吕晓琪 谷宇 《计算机工程》 CAS CSCD 北大核心 2023年第10期239-246,254,共9页
皮肤癌是最致命的癌症之一,对皮肤镜图像进行精确分类尤为关键,然而现有的皮肤镜图像存在形态复杂、样本数量较少的问题,导致现有的自动分类方法难以提取图像特征信息,误判率较高。提出一种改进ConvNeXt的方法,并构建SE-SimAM-ConvNeXt... 皮肤癌是最致命的癌症之一,对皮肤镜图像进行精确分类尤为关键,然而现有的皮肤镜图像存在形态复杂、样本数量较少的问题,导致现有的自动分类方法难以提取图像特征信息,误判率较高。提出一种改进ConvNeXt的方法,并构建SE-SimAM-ConvNeXt模型。以ConvNeXt为基础网络,加入SimAM无参注意力模块,提升网络的特征提取能力,并在基础网络中引入通道注意力机制,增强ConvNeXt对潜在关键特征的挖掘能力。在训练初始时加入预热机制Cosine Warmup,在该过程中使用余弦函数值进行学习率的衰减,进一步加速ConvNeXt的收敛,提高ConvNeXt模型的分类能力。在HAM10000皮肤数据集上的实验结果表明,该模型的分类准确率、精确度、召回率、特异性分别为92.9%、85.3%、78.0%、97.5%,具有较好的皮肤镜图像分类能力,对皮肤癌病变的辅助诊断有一定程度的应用价值,可帮助皮肤科医生对皮肤癌做进一步的诊断。 展开更多
关键词 皮肤镜图像分类 ConvNeXt网络 通道注意力机制 simam无参注意力 预热机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部