A series of zinc borotellurite glass co-doped with lanthanum and silver oxide with the chemical formula of [{[(TeO2)0.7(B2O3)0.3]0.7(ZnO)0.3}0.96(La2O3)0.04]1-x(Ag2O)x where the molar frac-tion of silver oxide, x = 0....A series of zinc borotellurite glass co-doped with lanthanum and silver oxide with the chemical formula of [{[(TeO2)0.7(B2O3)0.3]0.7(ZnO)0.3}0.96(La2O3)0.04]1-x(Ag2O)x where the molar frac-tion of silver oxide, x = 0.02, 0.04, 0.06, 0.08 and 0.10 had been successfully prepared via the conventional melt-quenching technique. The structural properties of the glasses were unveiled through X-ray Diffraction (XRD) and Fourier Transform Infra-Red (FTIR) spectroscopy while optical properties of the glasses were investigated with Ultra Violet Visible (UV-Vis) spectropho-toscopy. The short range periodic atomic arrangement in the glass matrix that implies the amorphous nature of the glass was confirmed with the presence of a broad hump in the XRD pattern. On the other hand, the three absorption bands observable in the FTIR spectra had proven the existence of BO4, BO3 as well as TeO4 units in the glass network. The absorbance values retrieved from UV-Vis spectroscopy were utilized to calculate the indirect energy band gap and Urbach energy values of the fabricated glass. By employing the equations proposed by Mott and Davis, the obtained indirect energy band gap have val-ues ranging from 2.16 to 4.16 eV.The decreasing trend in indirect energy band gap and increasing Urbach energy values were related to the increasing num-ber of nonbridging oxygen (NBO) in the glass that is created from the breaking of Te-O-Te or B-O-B bonds after lanthanum as well as silver oxide are incor-porated into the zinc borotellurite glass network.展开更多
Silver doped sodium borate glasses prepared by melt-quenching technique were checked by XRD technique for their amorphous nature. It is observed that the molar volume increases with increasing Ag2O content leading to ...Silver doped sodium borate glasses prepared by melt-quenching technique were checked by XRD technique for their amorphous nature. It is observed that the molar volume increases with increasing Ag2O content leading to open struc- ture. Fourier Transform Infrared spectroscopy (FTIR) reveals the formation of BO3 and BO4 groups upon addition of silver oxide as modifier. From the Ultraviolet-Visible (UV-VIS) absorption spectra it is seen that the optical band gap increases with the increase of Ag2O content. Urbach energy is observed between 0.55 - 0.77 eV. The results obtained from molar volume, Fourier Transform Infrared spectroscopy and band gap energy measurements are in agreement with each other and nearly give the similar information about the studied glasses.展开更多
文摘A series of zinc borotellurite glass co-doped with lanthanum and silver oxide with the chemical formula of [{[(TeO2)0.7(B2O3)0.3]0.7(ZnO)0.3}0.96(La2O3)0.04]1-x(Ag2O)x where the molar frac-tion of silver oxide, x = 0.02, 0.04, 0.06, 0.08 and 0.10 had been successfully prepared via the conventional melt-quenching technique. The structural properties of the glasses were unveiled through X-ray Diffraction (XRD) and Fourier Transform Infra-Red (FTIR) spectroscopy while optical properties of the glasses were investigated with Ultra Violet Visible (UV-Vis) spectropho-toscopy. The short range periodic atomic arrangement in the glass matrix that implies the amorphous nature of the glass was confirmed with the presence of a broad hump in the XRD pattern. On the other hand, the three absorption bands observable in the FTIR spectra had proven the existence of BO4, BO3 as well as TeO4 units in the glass network. The absorbance values retrieved from UV-Vis spectroscopy were utilized to calculate the indirect energy band gap and Urbach energy values of the fabricated glass. By employing the equations proposed by Mott and Davis, the obtained indirect energy band gap have val-ues ranging from 2.16 to 4.16 eV.The decreasing trend in indirect energy band gap and increasing Urbach energy values were related to the increasing num-ber of nonbridging oxygen (NBO) in the glass that is created from the breaking of Te-O-Te or B-O-B bonds after lanthanum as well as silver oxide are incor-porated into the zinc borotellurite glass network.
文摘Silver doped sodium borate glasses prepared by melt-quenching technique were checked by XRD technique for their amorphous nature. It is observed that the molar volume increases with increasing Ag2O content leading to open struc- ture. Fourier Transform Infrared spectroscopy (FTIR) reveals the formation of BO3 and BO4 groups upon addition of silver oxide as modifier. From the Ultraviolet-Visible (UV-VIS) absorption spectra it is seen that the optical band gap increases with the increase of Ag2O content. Urbach energy is observed between 0.55 - 0.77 eV. The results obtained from molar volume, Fourier Transform Infrared spectroscopy and band gap energy measurements are in agreement with each other and nearly give the similar information about the studied glasses.