通过对粉砂岩进行单轴加载声发射实验,基于HHT分析方法,研究岩石破裂过程的声发射信号频率特性。研究结果表明:HHT是一种基于主成分分析的信号时频分析方法,可以确定信号的主次成分,用瞬时频率来精确描述信号的时频特性;粉砂岩破裂过...通过对粉砂岩进行单轴加载声发射实验,基于HHT分析方法,研究岩石破裂过程的声发射信号频率特性。研究结果表明:HHT是一种基于主成分分析的信号时频分析方法,可以确定信号的主次成分,用瞬时频率来精确描述信号的时频特性;粉砂岩破裂过程中声发射信号的时频分布有3个阶段,即初始区、波动区、沉寂区;粉砂岩破裂过程中声发射信号的主频与所处的应力水平有关,在岩石破裂前,随着应力水平的提高,主频逐渐降低;粉砂岩破裂过程中,从裂纹稳定扩展到不稳定扩展,直到岩石破裂,高能量声发射信号由高频率向低频率转移,且持续的时间增加;粉砂岩破裂过程中声发射信号适宜监测频段为20-120 k Hz。展开更多
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora...The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.展开更多
This paper presents a comprehensive summary of data, analyses and findings from the investigations over the past twelve years about the relics of large Longyou rock caverns carved about 2 000 years ago at shallow dept...This paper presents a comprehensive summary of data, analyses and findings from the investigations over the past twelve years about the relics of large Longyou rock caverns carved about 2 000 years ago at shallow depths in argillaceous siltstone. The paper presents the typical features associated with the rock caverns. They include structures, large spans, portals, extreme shallow-buried depths, imprints, drainages, inclined ceiling, inclined sidewalls, slender rock pillars, rock staircases, site and strata selections, caving lighting, carving method, and underground construction surveying. They are used to reconstruct and highlight the design and construction methods adopted by the ancients. The paper further demonstrates that the relics of the complete large rock caverns are a consequence of coincidental combinations of ancient human effort and natural factors. The full occupation of water with weak acidity in the large rock caverns with the soft surrounding rocks of weak alkalinity is found to be the main factor ensuring and preserving the caverns to have been stable and integral over 2 000 years. However, the five unwatered complete rock cavern relics have been experiencing various deteriorations and small failures including cracks, seepage, small rock falls and delaminating ceiling rocks. Although these deteriorations have been repaired and stabilized effectively, the paper demonstrates that an entire roof collapse failure is highly possible in the near future to each of the five unwatered rock cavern relics. The findings presented in this paper are also invaluable both to the long-term protection and preservation of the large rock cavern relics of national and international interests and importance, and to extend and enrich our experience and knowledge on the long-term stability and integrity of man-made underground rock cavern engineering projects.展开更多
文摘通过对粉砂岩进行单轴加载声发射实验,基于HHT分析方法,研究岩石破裂过程的声发射信号频率特性。研究结果表明:HHT是一种基于主成分分析的信号时频分析方法,可以确定信号的主次成分,用瞬时频率来精确描述信号的时频特性;粉砂岩破裂过程中声发射信号的时频分布有3个阶段,即初始区、波动区、沉寂区;粉砂岩破裂过程中声发射信号的主频与所处的应力水平有关,在岩石破裂前,随着应力水平的提高,主频逐渐降低;粉砂岩破裂过程中,从裂纹稳定扩展到不稳定扩展,直到岩石破裂,高能量声发射信号由高频率向低频率转移,且持续的时间增加;粉砂岩破裂过程中声发射信号适宜监测频段为20-120 k Hz。
基金National Natural Science Foundation of China(No.52178393)2023 High-level Talent Research Project from Yancheng Institute of Technology(No.xjr2023019)+1 种基金Open Fund Project of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering(Grant No.YT202302)Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan(No.2020TD005).
文摘The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.
基金Supported by the National Natural Science Foundation of China (40902088 and 40672190)the Key Project of Zhejiang Province Science and Technology (2007C23093)
文摘This paper presents a comprehensive summary of data, analyses and findings from the investigations over the past twelve years about the relics of large Longyou rock caverns carved about 2 000 years ago at shallow depths in argillaceous siltstone. The paper presents the typical features associated with the rock caverns. They include structures, large spans, portals, extreme shallow-buried depths, imprints, drainages, inclined ceiling, inclined sidewalls, slender rock pillars, rock staircases, site and strata selections, caving lighting, carving method, and underground construction surveying. They are used to reconstruct and highlight the design and construction methods adopted by the ancients. The paper further demonstrates that the relics of the complete large rock caverns are a consequence of coincidental combinations of ancient human effort and natural factors. The full occupation of water with weak acidity in the large rock caverns with the soft surrounding rocks of weak alkalinity is found to be the main factor ensuring and preserving the caverns to have been stable and integral over 2 000 years. However, the five unwatered complete rock cavern relics have been experiencing various deteriorations and small failures including cracks, seepage, small rock falls and delaminating ceiling rocks. Although these deteriorations have been repaired and stabilized effectively, the paper demonstrates that an entire roof collapse failure is highly possible in the near future to each of the five unwatered rock cavern relics. The findings presented in this paper are also invaluable both to the long-term protection and preservation of the large rock cavern relics of national and international interests and importance, and to extend and enrich our experience and knowledge on the long-term stability and integrity of man-made underground rock cavern engineering projects.