The first two Medium Earth Orbit(MEO) satellites of the third generation of Bei Dou satellite navigation System(BDS-3) were successfully launched on November 5, 2017. This historical launch starts the new era of the g...The first two Medium Earth Orbit(MEO) satellites of the third generation of Bei Dou satellite navigation System(BDS-3) were successfully launched on November 5, 2017. This historical launch starts the new era of the global navigation satellite system of Bei Dou. Before the first two satellites of BDS-3, a demonstration system for BDS-3 with five satellites,including two Inclined Geosynchronous Orbit satellites(IGSO) and three MEO satellites, was established between 2015 and2016 for testing the new payloads, new designed signals and new techniques. In the demonstration system, the new S frequency signal and satellite hydrogen clock as well as inter-satellite link(ISL) based on Ka-band signals with time-division multiple addresses(TDMA) were tested. This paper mainly analyzes the performances of the demonstration system, including the signalto-noise ratios, pseudorange errors and the multipath errors of the civilian signals of BDS-3. The qualities of signals in space,time synchronization and timing precision were tested as well. Most of the performances were compared with those of the regional Bei Dou satellite navigation system(BDS-2). At last, the performances of positioning, navigation and timing(PNT) of the future Bei Dou global system(BDS-3) were evaluated based on the signal quality of the present demonstration satellite system.展开更多
A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive c...A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive comparison of six NAO indices indicates that the new NAOI provides a more faithful representation of the spatial-temporal variability associated with the NAO on all timescales. A very high signal-to-noise ratio for the NAOI exists for all seasons, and the life cycle represented by the NAOI describes well the seasonal migration for action centers of the NAO. The NAOI captures a larger fraction of the variance of sea level pressure over the North Atlantic sector (20°-90°N, 80°W-30°E), on average 10% more than any other NAO index. There are quite different relationships between the NAOI and surface air temperature during winter and summer. A novel feature, however, is that the NAOI is significantly negative correlated with surface air temperature over the North Atlantic Ocean between 10°-25°N and 70°-30°W, whether in winter or summer. From 1873, the NAOI exhibits strong interannual and decadal variability. Its interannual variability of the twelve calendar months is obviously phase-locked with the seasonal cycle. Moreover, the annual NAOI exhibits a clearer decadal variability in amplitude than the winter NAOI. An upward trend is found in the annual NAOI between the 1870s and 1910s, while the other winter NAO indices fail to show this tendency. The annual NAOI exhibits a strongly positive epoch of 50 years between 1896 and 1950. After 1950, the variability of the annual NAOI is very similar to that of the winter NAO indices.展开更多
Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high sig...Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.展开更多
VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identic...VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identical neighbouring window size in all wavelet subbands. In this paper, an improved method is proposed, that determines a threshold as well as neighbouring window size for every subband using its lengths. Our experimental results illustrate that the proposed approach is better than the existing ones, i.e., NeighShrink, ModineighShrink and VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e. visual quality of the image.展开更多
The middle pulse repetition frequency(MPRF)and high pulse repetition frequency(HPRF)modes are widely adopted in airborne pulse Doppler(PD)radar systems,which results in the problem that the range measurement of ...The middle pulse repetition frequency(MPRF)and high pulse repetition frequency(HPRF)modes are widely adopted in airborne pulse Doppler(PD)radar systems,which results in the problem that the range measurement of targets is ambiguous.The existing data processing based range ambiguity resolving methods work well on the condition that the signal-to-noise ratio(SNR)is high enough.In this paper,a multiple model particle flter(MMPF)based track-beforedetect(TBD)method is proposed to address the problem of target detection and tracking with range ambiguous radar in low-SNR environment.By introducing a discrete variable that denotes whether a target is present or not and the discrete pulse interval number(PIN)as components of the target state vector,and modeling the incremental variable of the PIN as a three-state Markov chain,the proposed algorithm converts the problem of range ambiguity resolving into a hybrid state fltering problem.At last,the hybrid fltering problem is implemented by a MMPF-based TBD method in the Bayesian framework.Simulation results demonstrate that the proposed Bayesian approach can estimate target state as well as the PIN simultaneously,and succeeds in detecting and tracking weak targets with the range ambiguous radar.Simulation results also show that the performance of the proposed method is superior to that of the multiple hypothesis(MH)method in low-SNR environment.展开更多
In this paper, the stochastic resonance in a bias linear system subjected multiplicative and additive dichotomous noise is investigated. Using the linear-response theory and the properties of the dichotomous noise, th...In this paper, the stochastic resonance in a bias linear system subjected multiplicative and additive dichotomous noise is investigated. Using the linear-response theory and the properties of the dichotomous noise, this paper finds the exact expressions for the first two moments and the signal-to-noise ratio (SNR). It is shown that the SNR is a non-monotonic function of the correlation time of the multiplicative and additive noise, and it varies non-monotonously with the intensity and asymmetry of the multiplicative noise as well as the external field frequency. Moreover, the SNR depends on the system bias, the intensity of the cross noise between the multiplicative and additive noise, and the strength and asymmetry of the additive noise.展开更多
This paper aims to investigate the stochastic resonance (SR) in an FitzHugh-Nagumo (FHN) model with an additive LEvy noise numerically. The non-Gaussian LEvy noise is a kind of general random noise which is differ...This paper aims to investigate the stochastic resonance (SR) in an FitzHugh-Nagumo (FHN) model with an additive LEvy noise numerically. The non-Gaussian LEvy noise is a kind of general random noise which is different from the usual Gaussian noise, and it has small fluctuations with the unpredictable jumps to describe the random fluctuations in an FHN model. SR is determined by the signal-to-noise ratio (SNR), and the numerical simulation results show the occurrence of the SR phenomena in the given FHN system. The influence of various parameters of the LEvy noise and the FHN model on the SR will be exam- ined, and some mechanisms of the LEvy noise-induced SR are presented which are different from those of the Gaussian noise.展开更多
基金supported by National Key R&D Program of China (Grant Nos. 2016YFB0501700, 2016YFB0501701)National Natural Science Foundation of China (Grant No. 41374019)
文摘The first two Medium Earth Orbit(MEO) satellites of the third generation of Bei Dou satellite navigation System(BDS-3) were successfully launched on November 5, 2017. This historical launch starts the new era of the global navigation satellite system of Bei Dou. Before the first two satellites of BDS-3, a demonstration system for BDS-3 with five satellites,including two Inclined Geosynchronous Orbit satellites(IGSO) and three MEO satellites, was established between 2015 and2016 for testing the new payloads, new designed signals and new techniques. In the demonstration system, the new S frequency signal and satellite hydrogen clock as well as inter-satellite link(ISL) based on Ka-band signals with time-division multiple addresses(TDMA) were tested. This paper mainly analyzes the performances of the demonstration system, including the signalto-noise ratios, pseudorange errors and the multipath errors of the civilian signals of BDS-3. The qualities of signals in space,time synchronization and timing precision were tested as well. Most of the performances were compared with those of the regional Bei Dou satellite navigation system(BDS-2). At last, the performances of positioning, navigation and timing(PNT) of the future Bei Dou global system(BDS-3) were evaluated based on the signal quality of the present demonstration satellite system.
基金supported jointly by the NOAA Arctic Research,CAS Project ZKCX2-SW-210the National Natural Science Foundation of China(Grant No.40275025)
文摘A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive comparison of six NAO indices indicates that the new NAOI provides a more faithful representation of the spatial-temporal variability associated with the NAO on all timescales. A very high signal-to-noise ratio for the NAOI exists for all seasons, and the life cycle represented by the NAOI describes well the seasonal migration for action centers of the NAO. The NAOI captures a larger fraction of the variance of sea level pressure over the North Atlantic sector (20°-90°N, 80°W-30°E), on average 10% more than any other NAO index. There are quite different relationships between the NAOI and surface air temperature during winter and summer. A novel feature, however, is that the NAOI is significantly negative correlated with surface air temperature over the North Atlantic Ocean between 10°-25°N and 70°-30°W, whether in winter or summer. From 1873, the NAOI exhibits strong interannual and decadal variability. Its interannual variability of the twelve calendar months is obviously phase-locked with the seasonal cycle. Moreover, the annual NAOI exhibits a clearer decadal variability in amplitude than the winter NAOI. An upward trend is found in the annual NAOI between the 1870s and 1910s, while the other winter NAO indices fail to show this tendency. The annual NAOI exhibits a strongly positive epoch of 50 years between 1896 and 1950. After 1950, the variability of the annual NAOI is very similar to that of the winter NAO indices.
基金Supported by the National Natural Science Foundation of China(Grant No.10672178)
文摘Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.
文摘VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identical neighbouring window size in all wavelet subbands. In this paper, an improved method is proposed, that determines a threshold as well as neighbouring window size for every subband using its lengths. Our experimental results illustrate that the proposed approach is better than the existing ones, i.e., NeighShrink, ModineighShrink and VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e. visual quality of the image.
基金supported by the National Natural Science Foundation of China(Nos.61179018,61102165,61002006,61102167)Aeronautical Science Foundation of China(No.20115584006)Special Foundation Program for Mountain Tai Scholars
文摘The middle pulse repetition frequency(MPRF)and high pulse repetition frequency(HPRF)modes are widely adopted in airborne pulse Doppler(PD)radar systems,which results in the problem that the range measurement of targets is ambiguous.The existing data processing based range ambiguity resolving methods work well on the condition that the signal-to-noise ratio(SNR)is high enough.In this paper,a multiple model particle flter(MMPF)based track-beforedetect(TBD)method is proposed to address the problem of target detection and tracking with range ambiguous radar in low-SNR environment.By introducing a discrete variable that denotes whether a target is present or not and the discrete pulse interval number(PIN)as components of the target state vector,and modeling the incremental variable of the PIN as a three-state Markov chain,the proposed algorithm converts the problem of range ambiguity resolving into a hybrid state fltering problem.At last,the hybrid fltering problem is implemented by a MMPF-based TBD method in the Bayesian framework.Simulation results demonstrate that the proposed Bayesian approach can estimate target state as well as the PIN simultaneously,and succeeds in detecting and tracking weak targets with the range ambiguous radar.Simulation results also show that the performance of the proposed method is superior to that of the multiple hypothesis(MH)method in low-SNR environment.
文摘In this paper, the stochastic resonance in a bias linear system subjected multiplicative and additive dichotomous noise is investigated. Using the linear-response theory and the properties of the dichotomous noise, this paper finds the exact expressions for the first two moments and the signal-to-noise ratio (SNR). It is shown that the SNR is a non-monotonic function of the correlation time of the multiplicative and additive noise, and it varies non-monotonously with the intensity and asymmetry of the multiplicative noise as well as the external field frequency. Moreover, the SNR depends on the system bias, the intensity of the cross noise between the multiplicative and additive noise, and the strength and asymmetry of the additive noise.
基金supported by the the National Natural Science Foundation of China(Grant Nos.11372247&11472224)the NPU Foundation for Undergraduate Graduation Design
文摘This paper aims to investigate the stochastic resonance (SR) in an FitzHugh-Nagumo (FHN) model with an additive LEvy noise numerically. The non-Gaussian LEvy noise is a kind of general random noise which is different from the usual Gaussian noise, and it has small fluctuations with the unpredictable jumps to describe the random fluctuations in an FHN model. SR is determined by the signal-to-noise ratio (SNR), and the numerical simulation results show the occurrence of the SR phenomena in the given FHN system. The influence of various parameters of the LEvy noise and the FHN model on the SR will be exam- ined, and some mechanisms of the LEvy noise-induced SR are presented which are different from those of the Gaussian noise.