针对通信信号的自动调制识别需要大量特征提取的问题,提出了一种分离通道卷积神经网络自动调制识别算法。该算法通过结合深度学习中卷积神经网络(CNN),分别提取时域信号的多通道和分离通道调制特征,再利用融合特征实现不同信号的分类。...针对通信信号的自动调制识别需要大量特征提取的问题,提出了一种分离通道卷积神经网络自动调制识别算法。该算法通过结合深度学习中卷积神经网络(CNN),分别提取时域信号的多通道和分离通道调制特征,再利用融合特征实现不同信号的分类。仿真结果表明,相比基于CNN的算法,所提算法在高信噪比下针对两个数据集的识别率分别提升7%和18%;此外,相比于基于特征提取的传统识别算法,其高阶调制识别性能平均提升3 d B。展开更多
为解决有记忆非线性的连续相位调制(CPM)信号调制方式识别精度低的问题,该文提出一种基于记忆因子的CPM信号最大似然调制识别新方法。该方法定义具有时齐马尔科夫性的映射符号,通过计算其后验概率构造记忆因子,进一步结合CPM分解和EM算...为解决有记忆非线性的连续相位调制(CPM)信号调制方式识别精度低的问题,该文提出一种基于记忆因子的CPM信号最大似然调制识别新方法。该方法定义具有时齐马尔科夫性的映射符号,通过计算其后验概率构造记忆因子,进一步结合CPM分解和EM算法,推导出时间可分离,信道参数可估计的CPM信号似然函数。该调制识别方法所需符号数目少,适用信噪比范围广,识别CPM信号种类多且精度高,对相位误差鲁棒性强。仿真结果证明,当符号数目为200,信噪比为0 d B,相位误差任意时,该方法对8种CPM信号的识别率可达95%以上。展开更多
针对低信噪比条件下复杂多类雷达信号调制方式识别率低的问题,本文提出了一种基于时频分析和深度学习的雷达信号调制方式识别方法.利用CTFD(Cohen class Time-Frequency Distribution)时频分析将信号时域波形变换为二维时频图像,更清晰...针对低信噪比条件下复杂多类雷达信号调制方式识别率低的问题,本文提出了一种基于时频分析和深度学习的雷达信号调制方式识别方法.利用CTFD(Cohen class Time-Frequency Distribution)时频分析将信号时域波形变换为二维时频图像,更清晰地表征信号特征;采用灰度化和双三次插值运算等方法对时频图预处理,实现图像通道数和尺寸的减少,以降低深度学习模型数据输入量;进一步调整输入输出通道数构建小型EfficientNet网络,再由多个小型网络并行处理构建分裂网络EfficientNet-B0-Split3,将时频图像输入网络实现雷达信号调制方式识别.实验结果表明,在信噪比为-8 dB时,新方法对17类不同调制方式的雷达信号整体识别率可达97.1%,相对于扩张残差网络提高约2.4个百分点;在信噪比为-10 dB时,识别率可达92.1%,相对于EfficientNet提高约0.7个百分点,提升了低信噪比条件下复杂多类雷达信号调制方式识别率.展开更多
文摘针对通信信号的自动调制识别需要大量特征提取的问题,提出了一种分离通道卷积神经网络自动调制识别算法。该算法通过结合深度学习中卷积神经网络(CNN),分别提取时域信号的多通道和分离通道调制特征,再利用融合特征实现不同信号的分类。仿真结果表明,相比基于CNN的算法,所提算法在高信噪比下针对两个数据集的识别率分别提升7%和18%;此外,相比于基于特征提取的传统识别算法,其高阶调制识别性能平均提升3 d B。
文摘为解决有记忆非线性的连续相位调制(CPM)信号调制方式识别精度低的问题,该文提出一种基于记忆因子的CPM信号最大似然调制识别新方法。该方法定义具有时齐马尔科夫性的映射符号,通过计算其后验概率构造记忆因子,进一步结合CPM分解和EM算法,推导出时间可分离,信道参数可估计的CPM信号似然函数。该调制识别方法所需符号数目少,适用信噪比范围广,识别CPM信号种类多且精度高,对相位误差鲁棒性强。仿真结果证明,当符号数目为200,信噪比为0 d B,相位误差任意时,该方法对8种CPM信号的识别率可达95%以上。