In this article, we give the construction of new four-dimensional signal constellations in the Euclidean space, which represent a certain combination of binary frequency-shift keying (BFSK) and <i>M</i>-ar...In this article, we give the construction of new four-dimensional signal constellations in the Euclidean space, which represent a certain combination of binary frequency-shift keying (BFSK) and <i>M</i>-ary amplitude-phase-shift keying (MAPSK). Description of such signals and the formulas for calculating the minimum squared Euclidean distance are presented. We have developed an analytic building method for even and odd values of <i>M</i>. Hence, no computer search and no heuristic methods are required. The new optimized BFSK-MAPSK (<i>M </i>= 5,6,···,16) signal constructions are built for the values of modulation indexes <i>h</i> =0.1,0.15,···,0.5 and their parameters are given. The results of computer simulations are also provided. Based on the obtained results we can conclude, that BFSK-MAPSK systems outperform similar four-dimensional systems both in terms of minimum squared Euclidean distance and simulated symbol error rate.展开更多
针对高动态场景下多普勒频移问题和缺少定量分析,该文以研究正交调制的多普勒频移响应机理为基点,对多普勒频移对正交调制系统的影响进行了研究,从星座图判决区间的角度推导了多进制数字相位调制信号和多进制正交幅度调制信号在多普勒...针对高动态场景下多普勒频移问题和缺少定量分析,该文以研究正交调制的多普勒频移响应机理为基点,对多普勒频移对正交调制系统的影响进行了研究,从星座图判决区间的角度推导了多进制数字相位调制信号和多进制正交幅度调制信号在多普勒频移下的误符号率公式。理论分析和实验结果表明:多普勒频移对正交调制的影响是星座的旋转,误符号率公式推导结果与实际误符号率基本相同,系统的性能随着调制指数和运动速度的增加而下降。在信噪比为20 d B时,多进制数字相位调制信号的抗多普勒频移能力要强于多进制正交幅度调制信号。展开更多
文摘In this article, we give the construction of new four-dimensional signal constellations in the Euclidean space, which represent a certain combination of binary frequency-shift keying (BFSK) and <i>M</i>-ary amplitude-phase-shift keying (MAPSK). Description of such signals and the formulas for calculating the minimum squared Euclidean distance are presented. We have developed an analytic building method for even and odd values of <i>M</i>. Hence, no computer search and no heuristic methods are required. The new optimized BFSK-MAPSK (<i>M </i>= 5,6,···,16) signal constructions are built for the values of modulation indexes <i>h</i> =0.1,0.15,···,0.5 and their parameters are given. The results of computer simulations are also provided. Based on the obtained results we can conclude, that BFSK-MAPSK systems outperform similar four-dimensional systems both in terms of minimum squared Euclidean distance and simulated symbol error rate.
文摘针对高动态场景下多普勒频移问题和缺少定量分析,该文以研究正交调制的多普勒频移响应机理为基点,对多普勒频移对正交调制系统的影响进行了研究,从星座图判决区间的角度推导了多进制数字相位调制信号和多进制正交幅度调制信号在多普勒频移下的误符号率公式。理论分析和实验结果表明:多普勒频移对正交调制的影响是星座的旋转,误符号率公式推导结果与实际误符号率基本相同,系统的性能随着调制指数和运动速度的增加而下降。在信噪比为20 d B时,多进制数字相位调制信号的抗多普勒频移能力要强于多进制正交幅度调制信号。