期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
神经网络信息传输函数Sigm oid与tanh比较论证 被引量:13
1
作者 李曦 《武汉理工大学学报(交通科学与工程版)》 北大核心 2004年第2期312-314,共3页
人工神经网络中的信息传输函数采用 Sigmoid函数 ,但这种函数存在缺陷 ,为克服其不足 ,在构建的神经网络计算机中央处理器利用率的系统中采用 tanh函数取代 Sigmoid函数 .实践证实tanh函数的采用 。
关键词 神经网络 信息传输函数 中央处理器 sigmoid函数 tanh函数 计算机
下载PDF
A Neural Based Experimental Fire-Outbreak Detection System for Urban Centres
2
作者 Agaji Iorshase Shangbum F. Caleb 《Journal of Software Engineering and Applications》 2016年第3期71-79,共9页
Incessant fire-outbreak in urban settlements has remained intractable especially in developing countries like Nigeria. This is often characterized by grave socio-economic aftermath effects. Urban fire outbreak in Nige... Incessant fire-outbreak in urban settlements has remained intractable especially in developing countries like Nigeria. This is often characterized by grave socio-economic aftermath effects. Urban fire outbreak in Nigerian cities has been on increase in recent times. The major problem faced by fire fighters in Nigerian urban centres is that there are no mechanisms to detect fire outbreaks early enough to save lives and properties. They often rely on calls made by neighbours or occupants when an outbreak occurs and this accounts for the delay in fighting fire outbreaks. This work uses Artificial Neural Networks (ANN) with backpropagation method to detect the occurrence of urban fires. The method uses smoke density, room temperature and cooking gas concentration as inputs. The work was implemented using Java programming language and results showed that it detected the occurrence of urban fires with reasonable accuracy. The work is recommended for use to minimize the effect of urban fire outbreak. 展开更多
关键词 Fire-Outbreak Detection Neural Network Urban Fires Backpropagation sigmoid transfer function Fire Alert Temperature Smoke Density Cooking Gas Concentration WEIGHTS
下载PDF
基于Tan-Sigmoid函数参数调整的BP神经网络改进算法 被引量:8
3
作者 罗兵 黄万杰 杨帅 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第1期150-153,158,共5页
为提高BP神经网络的性能,对网络的联接权值W和神经元的tan-sigmoid转换函数的参数T、θ进行调整,使信息分布存储于权值矩阵及转换函数中,比传统的算法具有更强的非线性映射能力.经严密的数学推导,给出了最终的改进算法公式和1个预测需... 为提高BP神经网络的性能,对网络的联接权值W和神经元的tan-sigmoid转换函数的参数T、θ进行调整,使信息分布存储于权值矩阵及转换函数中,比传统的算法具有更强的非线性映射能力.经严密的数学推导,给出了最终的改进算法公式和1个预测需求量的算例,结果表明,改进后的算法能有效地减少隐层节点数,且能加快收敛速度和提高收敛精度. 展开更多
关键词 BP神经网络 tan-sigmoid转换函数 分布存储
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部