In June 2013, the U.S. National Security Agency proposed two families of lightweight block ciphers, called SIMON and SPECK respectively. These ciphers are designed to perform excellently on both hardware and software ...In June 2013, the U.S. National Security Agency proposed two families of lightweight block ciphers, called SIMON and SPECK respectively. These ciphers are designed to perform excellently on both hardware and software platforms. In this paper, we mainly present zero-correlation linear cryptanalysis on various versions of SIMON. Firstly, by using miss- in-the-middle approach, we construct zero-correlation linear distinguishers of SIMON, and zero-correlation linear attacks are presented based oi1 careful analysis of key recovery phase. Secondly, multidimensional zero-correlation linear attacks are used to reduce the data complexity. Our zero-correlation linear attacks perform better than impossible differential attacks proposed by Abed et al. in ePrint Report 2013/568. Finally, we also use the divide-and-conquer technique to improve the results of linear cryptanalysis proposed by Javad et al. in ePrint Report 2013/663.展开更多
Simultaneously investigating multiple treatments in a single study achieves considerable efficiency in contrast to the traditional two-arm trials.Balancing treatment allocation for influential covariates has become in...Simultaneously investigating multiple treatments in a single study achieves considerable efficiency in contrast to the traditional two-arm trials.Balancing treatment allocation for influential covariates has become increasingly important in today’s clinical trials.The multi-arm covariate-adaptive randomized clinical trial is one of the most powerful tools to incorporate covariate information and multiple treatments in a single study.Pocock and Simon’s procedure has been extended to the multi-arm case.However,the theoretical properties of multi-arm covariate-adaptive randomization have remained largely elusive for decades.In this paper,we propose a general framework for multi-arm covariate-adaptive designs which also includes the two-arm case,and establish the corresponding theory under widely satisfied conditions.The theoretical results provide new insights into the balance properties of covariate-adaptive randomization procedures and make foundations for most existing statistical inferences under two-arm covariate-adaptive randomization.Furthermore,these open a door to study the theoretical properties of statistical inferences for clinical trials based on multi-arm covariateadaptive randomization procedures.展开更多
基金This work was supported by the National Basic Research 973 Program of China under Grant No. 2013CB338002 and the National Natural Science Foundation of China under Grant Nos. 61272476, 61202420, and 61232009.
文摘In June 2013, the U.S. National Security Agency proposed two families of lightweight block ciphers, called SIMON and SPECK respectively. These ciphers are designed to perform excellently on both hardware and software platforms. In this paper, we mainly present zero-correlation linear cryptanalysis on various versions of SIMON. Firstly, by using miss- in-the-middle approach, we construct zero-correlation linear distinguishers of SIMON, and zero-correlation linear attacks are presented based oi1 careful analysis of key recovery phase. Secondly, multidimensional zero-correlation linear attacks are used to reduce the data complexity. Our zero-correlation linear attacks perform better than impossible differential attacks proposed by Abed et al. in ePrint Report 2013/568. Finally, we also use the divide-and-conquer technique to improve the results of linear cryptanalysis proposed by Javad et al. in ePrint Report 2013/663.
基金supported by the National Key R&D Program of China (Grant No.2018YFC2000302)National Natural Science Foundation of China (Grant Nos.11731012,11731011 and 12031005)+1 种基金Ten Thousands Talents Plan of Zhejiang Province (Grant No.2018R52042)the Fundamental Research Funds for the Central Universities。
文摘Simultaneously investigating multiple treatments in a single study achieves considerable efficiency in contrast to the traditional two-arm trials.Balancing treatment allocation for influential covariates has become increasingly important in today’s clinical trials.The multi-arm covariate-adaptive randomized clinical trial is one of the most powerful tools to incorporate covariate information and multiple treatments in a single study.Pocock and Simon’s procedure has been extended to the multi-arm case.However,the theoretical properties of multi-arm covariate-adaptive randomization have remained largely elusive for decades.In this paper,we propose a general framework for multi-arm covariate-adaptive designs which also includes the two-arm case,and establish the corresponding theory under widely satisfied conditions.The theoretical results provide new insights into the balance properties of covariate-adaptive randomization procedures and make foundations for most existing statistical inferences under two-arm covariate-adaptive randomization.Furthermore,these open a door to study the theoretical properties of statistical inferences for clinical trials based on multi-arm covariateadaptive randomization procedures.