SiBN fibers are one of the most admirable microwave-transparent reinforced materials for high Mach number aircrafts.Currently,the detailed high-temperature oxidation behavior of SiBN fibers has not been studied yet.In...SiBN fibers are one of the most admirable microwave-transparent reinforced materials for high Mach number aircrafts.Currently,the detailed high-temperature oxidation behavior of SiBN fibers has not been studied yet.In this work,we studied the high-temperature oxidation behavior of SiBN fibers with different boron contents at the temperature range of 1000-1400℃in air.SiBN fibers started to be oxidized at 1100℃,with Si_(3)N_(4) and BN phase oxidized to SiO2 and B_(2)O_(3),respectively.Due to the gasification and the escape of molten B_(2)O_(3) at high temperatures,amorphous SiO_(2) could be remained at the fiber surface.As the fiber further oxidized,the molten B_(2)O_(3) at the inside may infiltrate into the fiber interior to react with Si_(3)N_(4),causing the precipitation of hexagonal boron nitride(h-BN)nanoparticles and the formation of SiO_(2)/BN layer.Finally,complex oxidation layers with two distinct concentric sublayers accompanied with two transition sublayers could be formed after the oxidizing treatment.展开更多
SiBN ceramics are widely considered to be the most promising material for microwavetransparent applications in harsh environments owing to its excellent thermal stability and low dielectric constant.This work focuses ...SiBN ceramics are widely considered to be the most promising material for microwavetransparent applications in harsh environments owing to its excellent thermal stability and low dielectric constant.This work focuses on the synthesis and ceramization of single-source precursors for the preparation of SiBN ceramics as well as the investigation of the corresponding microstructural evolution at high temperatures including molecular dynamic simulations.Carbon-and chlorine-free perhydropolysilazanes were reacted with borane dimethyl sulfide complex at different molar ratios to synthesize single-source precursors,which were subsequently pyrolyzed and annealed under N2 atmosphere(without ammonolysis)to prepare SiBN ceramics at 1100,1200,and 1300℃with high ceramic yield in contrast to previously widely-used ammonolysis synthesis process.The obtained amorphous SiBN ceramics were shown to have remarkably improved thermal stability and oxidation resistance compared to amorphous silicon nitride.Particularly,the experimental results have been combined with molecular dynamics simulation to further study the amorphous structure of SiBN and the atomic-scale diffusion behavior of Si,B,and N at 1300℃.Incorporation of boron into the Si–N network is found to suppress the crystallization of the formed amorphous silicon nitride and hence improves its thermal stability in N2 atmosphere.展开更多
基金supported by the National Natural Science Foundation of China(No.52073304).
文摘SiBN fibers are one of the most admirable microwave-transparent reinforced materials for high Mach number aircrafts.Currently,the detailed high-temperature oxidation behavior of SiBN fibers has not been studied yet.In this work,we studied the high-temperature oxidation behavior of SiBN fibers with different boron contents at the temperature range of 1000-1400℃in air.SiBN fibers started to be oxidized at 1100℃,with Si_(3)N_(4) and BN phase oxidized to SiO2 and B_(2)O_(3),respectively.Due to the gasification and the escape of molten B_(2)O_(3) at high temperatures,amorphous SiO_(2) could be remained at the fiber surface.As the fiber further oxidized,the molten B_(2)O_(3) at the inside may infiltrate into the fiber interior to react with Si_(3)N_(4),causing the precipitation of hexagonal boron nitride(h-BN)nanoparticles and the formation of SiO_(2)/BN layer.Finally,complex oxidation layers with two distinct concentric sublayers accompanied with two transition sublayers could be formed after the oxidizing treatment.
基金The authors would like to acknowledge Merck KGaA for the financial support of this research project.Wei Li acknowledges financial support from China Scholarship Council(No.201907040060)during his research at TU Darmstadt.Zhenghao Wu acknowledges the funding of Deutsche Forschungsgemeinschaft via the SFB-TRR 146“Multiscale Simulation Methods for Soft Matter Systems”,Project A8.
文摘SiBN ceramics are widely considered to be the most promising material for microwavetransparent applications in harsh environments owing to its excellent thermal stability and low dielectric constant.This work focuses on the synthesis and ceramization of single-source precursors for the preparation of SiBN ceramics as well as the investigation of the corresponding microstructural evolution at high temperatures including molecular dynamic simulations.Carbon-and chlorine-free perhydropolysilazanes were reacted with borane dimethyl sulfide complex at different molar ratios to synthesize single-source precursors,which were subsequently pyrolyzed and annealed under N2 atmosphere(without ammonolysis)to prepare SiBN ceramics at 1100,1200,and 1300℃with high ceramic yield in contrast to previously widely-used ammonolysis synthesis process.The obtained amorphous SiBN ceramics were shown to have remarkably improved thermal stability and oxidation resistance compared to amorphous silicon nitride.Particularly,the experimental results have been combined with molecular dynamics simulation to further study the amorphous structure of SiBN and the atomic-scale diffusion behavior of Si,B,and N at 1300℃.Incorporation of boron into the Si–N network is found to suppress the crystallization of the formed amorphous silicon nitride and hence improves its thermal stability in N2 atmosphere.