A NE-direction Mesozoic shoshonitic intrusive s黫te in SE Guangxi has been identified in terms of geological, petrological and geochemical investigations. The shoshonitic intrusives are characterized by enrichment of ...A NE-direction Mesozoic shoshonitic intrusive s黫te in SE Guangxi has been identified in terms of geological, petrological and geochemical investigations. The shoshonitic intrusives are characterized by enrichment of LILE, HFSE and LREE and no obvious Nb-Ta depletion, similar to those potassic rocks formed in within-plate and rifting environments. Unlike most shoshonitic rocks forming in arc settings, the SE Guangxi shoshonitic intrusives were likely generated during regional lithosphere extension induced by upwelling of asthenosphere mantle.展开更多
The trachyte and basaltic trachyte and intruded granite-porphyry of Gazacun formation of Wuyu Group in central Tibet are Neogene shoshonitic rocks. They are rich in LREE, with a weak to significant Eu negative anomali...The trachyte and basaltic trachyte and intruded granite-porphyry of Gazacun formation of Wuyu Group in central Tibet are Neogene shoshonitic rocks. They are rich in LREE, with a weak to significant Eu negative anomalies. The enriched Rb, Th, U, K, negative HFS elements Nb, Ta, Ti and P, and Sr, Nd and Pb isotope geochemistry suggest that the volcanic rocks of Wuyu Group originated from the partial melting of lower crust of the Gangdese belt, with the involvement of the Tethyan oceanic crust. It implies that the north-subducted Tethys ocean crust have arrived to the lower crust of Gangdese belt and recycled in the Neogene magmatism.展开更多
The late Paleozoic adakitic rocks are closely associated with the shoshonitic volcanic rocks in the western Tianshan Mountains, China, both spatially and temporally. The magmatic rocks were formed during the period fr...The late Paleozoic adakitic rocks are closely associated with the shoshonitic volcanic rocks in the western Tianshan Mountains, China, both spatially and temporally. The magmatic rocks were formed during the period from the middle to the late Permian with isotopic ages of 248-268 Ma. The 87Sr/86Sr initial ratios of the rocks are low in a narrow variation range (-0.7050). The 143Nd/144Nd initial ratios are high (-0.51240) with positive εND(t) values (+1.28-+4.92). In the εNd(t)-(87Sr/86Sr)i diagram they fall in the first quadrant. The association of the shoshonitic and adakitic rocks can be interpreted by a two-stage model: the shoshonitic volcanic rocks were formed through long-term fractional crystallization of underplated basaltic magma, while the following partial melting of the residual phases formed the adakitic rocks.展开更多
The Cenozoic magmatic rocks of shoshonitic series in the eastern Qinghai-Tibet Plateau include potassic alkaline plutonic rocks, volcanic rocks, lamprophyres and acidic porphyries. Analytical results show that these d...The Cenozoic magmatic rocks of shoshonitic series in the eastern Qinghai-Tibet Plateau include potassic alkaline plutonic rocks, volcanic rocks, lamprophyres and acidic porphyries. Analytical results show that these different lithological rocks are extremely similar in Sr, Nd and Pb isotopic compositions with the range of 0.705 187-0.707 254 for 87Sr/86Sr, 0.512 305-0.512 630 for 143Nd/144Nd, 18.53-18.97 for 206Pb/204Pb, 15.51-15.72 for 207Pb/204Pb and 38.38-39.24 for 208Pb/204Pb. They are isotopically similar to the EMU end-member. This indicates that mantle metasomatism must have taken place in their source region. The formation of these particular rocks is related to crustal thinning and mantle upwelling in a large-scale strike-slip and pull-apart fault zone at about 40 Ma in northern and eastern Qinghai-Tibet Plateau.展开更多
Many elongated, lenticular plutons of porphyritic granitoids are distributed mainly near the southern and northern margin of the Chhotanagpur Gneissic Complex (CGC) which belongs to the EW to ENE-WSW tending 1500 km...Many elongated, lenticular plutons of porphyritic granitoids are distributed mainly near the southern and northern margin of the Chhotanagpur Gneissic Complex (CGC) which belongs to the EW to ENE-WSW tending 1500 km long Proterozoic orogenic belt amalgamat ng the North and South Indian cratonic blocks. The late Grenvillian (1071 ±64 Ma) Raghunathpur porphyritic granitoid gneiss (PGG) batholith comprising alkali feldspar granite, granite, granodiorite, tonalite, quartz syenite and quartz monzonite intruded into the granitoid gneisses of southeastern part of CGC in the Purulia district, West Bengal and is aligned with ENE-WSW trending North Purulia sr^ear zone, Mineral chemistry, geochemistry, physical condition of crystallization and petrogenetic model of Raghunathpur PGG have been discussed for the first time. The petrographic and geochemical features (including major and trace- elements, mineral chemistry and S7Sr/S6Sr ratio) suggest these granitoids to be classified as the shosh- onitic type. Raghunathpur batholith was emplaced at around 800 ~C and at 6 kbar pressure tectonic discrimination diagrams reveal a post-collision tectonic setting while structural studies reveal its emplacement in the extensional fissure of North Purulia shear zone. l'he Raghunathpur granitoid is compared with some similar granitoids of Europe and China to draw its petrogenetic model. Hybridi- zation of mantle-generated enriched mafic magma and crustal magma at lower crust and later fractional crystallization is proposed for the petrogenesis of this PGG. Mafic magma generated in a post-collisional extension possibly because of delamination of subducting slab. Raghunathpur batholith had emplaced in the CGC during the final amalgamation (~ 1.0 Ga) of the North and South Indian cratonic blocks. Granitoid magma, after its generation at depth, was transported to its present level along megadyke channel, ways within shear zones.展开更多
We undertook zircon U-Pb dating and geochemical analyses of volcanic rocks from the Manitu Formation in the Hongol area, northeastern Inner Mongolia, to determine their age, petrogenesis and sources, which are importa...We undertook zircon U-Pb dating and geochemical analyses of volcanic rocks from the Manitu Formation in the Hongol area, northeastern Inner Mongolia, to determine their age, petrogenesis and sources, which are important for understanding the Late Mesozoic tectonic evolution of the Great Xing'an Range. The volcanic rocks of the Manitu Formation from the Hongol area consist primarily of trachyandesite, based on their chemical compositions. The zircons from two of these trachyandesites are euhedral-subhedral in shape, display clear oscillatory growth zoning and have high Th/U ratios (0.31- 1.15), indicating a magmatic origin. The results of LA-ICP-MS zircon U-Pb dating indicate that the volcanic rocks from the Manitu Formation in the Hongol area formed during the early Early Cretaceous with ages of 138.9-140.5 Ma. The volcanic rocks are high in alkali (Na2O + K2O = 6.22-8.26 wt%), potassium (K2O = 2.49-4.58 wt%) and aluminium (Al2O3 = 14.27-15.88 wt%), whereas they are low in iron (total Fe2O3 = 3.76-6.53 wt%) and titanium (TiO2 = 1.02-1.61 wt%). These volcanic rocks are obviously enriched in large ion lithophile elements, such as Rb, Ba, Th and U, and light rare earth elements, and are depleted in high field strength elements, such as Nb, Ta and Ti with pronounced negative anomalies. Their Sr-Nd-Pb isotopic compositions show positive εNd(t) (+0.16%o t0+1.64%o) and low TDM(t) (694--767 Ma). The geochemical characteristics of these volcanic rocks suggest that they belong to a shoshonitic series and were likely generated from the partial melting of an enriched lithospheric mantle that was metasomatised by fluids released from a subducted slab during the closure of the Mongol- Okhotsk Ocean. Elemental and isotopic features reveal that fractional crystallization with the removal of ferromagnesian minerals, plagioclase, ilmenite, magnetite and apatite played an important role during the evolution of the magma. These shoshonitic rocks were produced by the partial melting of展开更多
Cenozoic potassic-ultrapotassic igneous rocks are widespread in the southeastern Tibetan Plateau.Their petrogenesis and magmatic processes remain subject to debate in spite of numerous publications.Almost all of the C...Cenozoic potassic-ultrapotassic igneous rocks are widespread in the southeastern Tibetan Plateau.Their petrogenesis and magmatic processes remain subject to debate in spite of numerous publications.Almost all of the Cenozoic extrusive and intrusive rocks in the Yao’an area,western Yunnan Province,SW China,are geochemically shoshonitic,collectively termed here the Yao’an Shoshonitic Complex(YSC).The YSC is located in the(south)easternmost part of the ENE-WSW-trending,~550 km-long and~250 km-wide Cenozoic magmatic zone;the latter separates the orthogonal and oblique collision belts of the India-Eurasia collision orogen.Previously published geochronological and thermochronological data revealed that the rocks of the YSC were emplaced over a short timespan of 34-32 Ma.This and our new data suggest that the primary magma of the YSC likely was formed by partial melting of ancient continental lithospheric mantle beneath the Yangtze Block.This part of the continental lithospheric mantle had likely not been modified by any oceanic subduction.Fractionation crystallization of an Mg-and Ca-bearing mineral and TiFe oxides during the magmatic evolution probably account for the variable lithologies of the YSC.展开更多
The alkali-rich igneous rocks in China occur as fifteen linear distributed belts of each extending several hundreds to several thousands kilometers in length. These include most types of alkali-rich igneous rock categ...The alkali-rich igneous rocks in China occur as fifteen linear distributed belts of each extending several hundreds to several thousands kilometers in length. These include most types of alkali-rich igneous rock categories discovered worldwide. The related Au, Cu large and superlarge deposits or metallogenic focus-areas include Dongping, Guilaizhuang, Yulong, ete. Direct and in-direct genetic links have been found between alkali-rich igneous rocks and Au, Cu mineralization. The petrogenesis and metallogenesis of the alkali-rich igneous rocks are mainly controlled by (1) mantle enrichment, (2) strong interaction between mantle and crust, (3) lower contens of s黮f黵, high for and high contents of volatiles, (4) the significant turn of regional tectonic framework from compress to extension and (5) the strong change of regional lithosphere structure.展开更多
Cenozoic volcanism has been well studied in northern, eastern and southwestern Tibet (Coulon et al., 1986; Arnund et al., 1992; Turner et al., 1993, 1996; Deng, 1978, 1998; Miller et al., 1999, Wang et al, 2000). But ...Cenozoic volcanism has been well studied in northern, eastern and southwestern Tibet (Coulon et al., 1986; Arnund et al., 1992; Turner et al., 1993, 1996; Deng, 1978, 1998; Miller et al., 1999, Wang et al, 2000). But the data of the Cenozoic post\|collisional volcanism in central and southern Tibet is limited (Coulon et al., 1986; Turner et al., 1996; Zhang, 1998). These potassic and ultrapotassic intrusive and extrusive rocks are regarded to be a key clue for the deep lithospheric process of the plateau after Indo\|Asian collision. Present here is the preliminary results of the rocks from Oiyug (Wuyu) basin, about 150km northeast to Shigatse. Major and trace elements of the rocks are studied and compared with the ultrapotassic and potassic (shoshonitic) rocks exposed in Lhasa block and Qiangtang terrane.(1) Geologic setting. The magmatic rocks studied are Gazacun formation of the lower part of the Pliocene Oiyug group (N 2 oy ). The cross\|section is situated in Gazacun village of Namling. Gazacun formation is underlain unconformable by the andesitic rocks of Linzizong Group [(K 2—E 2) ln ], and covered by the coarse\|grain layered sandstone and conglomerate of Zongdangcun formation. The Gazacun formation consists of mediate\|acidic volcanics, granite\|porphyry, coal\|bearing clastics, plants and sporo\|pollen.展开更多
There exist intermediate to intermediate-acid shoshonitic rocks dated at 26.3- 36.7Ma in the Early Tertiary extensional basins along the NE flank of the Dali-Jianchuan section of the Honghe-Ailaoshan left-lateral stri...There exist intermediate to intermediate-acid shoshonitic rocks dated at 26.3- 36.7Ma in the Early Tertiary extensional basins along the NE flank of the Dali-Jianchuan section of the Honghe-Ailaoshan left-lateral strike-slip ductile shear zone, where some high- and medium-high grade metamorphosed mafic enclaves have been found. According to the P-T conditions and mineral assemblage characteristics, the enclaves are grouped into three types: type-Ⅰ, garnet diopsidite, formed at lower crust or in the transitional section between the mantle and the crust with the metamorphic condition P=(10.47-11.51)×108 Pa and T=771-932℃; type-Ⅱ, garnet- and diopside-bearing amphibolite, formed at the depth of middle to lower crust with the metamorphic condition: P=(6-10) ×108 Pa and T=780-830℃; type-Ⅲ, metamorphosed gabbro, formed at relatively higher levels than the above 2 types with lower metamorphic condition. Type-Ⅰand type-Ⅱenclaves had experienced a decompressional retrograde metamorphism caused by tectonic elevation associated with the metasomatism of SiO 2, Na 2O-rich fluid phase with the new equilibrated temperature at T=761-778℃. Geochemical evidence indicates that both deep-derived mafic enclaves and host rocks have similar EM Ⅱ properties, which are related to the involvement of subducted materials. The sustaining subduction, compression and strike-slip ductile shearing between the India plate and the Yangtze craton are the main constraints on the subcontinental mantle properties, interaction between crust and mantle, and the formation and evolution of alkali-rich magma.展开更多
The middle south parts of Tancheng Lujiang deep fault zone and its vicinity are an important locality of Cu Au deposits related to Mesozoic volcanic subvolcanic magmatism in eastern China. According to their metal...The middle south parts of Tancheng Lujiang deep fault zone and its vicinity are an important locality of Cu Au deposits related to Mesozoic volcanic subvolcanic magmatism in eastern China. According to their metallogenic features and ore forming conditions, copper gold deposits in this district are ascribed to two groups: the epithermal group which can be further divided into tellurium gold type, quartz adularia type and quartz manganoansiderite type; the magmatic hydrothermal group which includes porphyry Cu Au deposit, breccia pipe porphyry type Au Cu deposit and skarn type Au Cu deposit. In this paper, characteristics of six typical shoshonite hosted Cu Au deposits are outlined. Additionally, the factors that control the metallogenesis and distribution of these Cu Au deposits are discussed preliminarily.展开更多
Alkali-rich intrusive rocks in western Yunnan were derived from an enriched lithospheric mantle (EMⅡ) source. The data available indicated they are alkali-rich (K-2ONa-2O>8wt%) and shoshonitic. Although formed in ...Alkali-rich intrusive rocks in western Yunnan were derived from an enriched lithospheric mantle (EMⅡ) source. The data available indicated they are alkali-rich (K-2ONa-2O>8wt%) and shoshonitic. Although formed in a within-plate environment they exhibit signatures of arc magmatic rocks, such as high amounts of LILE and LREE relative to the HFSE and HREE, and thus high Ba/Nb, Ba/Zr, Sr/Y, La/Yb ratios as well as mimic chondrite-normalized REE and primitive mantle-normalized trace element patterns of subducted sediments, and they fall in the collision- or arc-related tectonic setting field on all discrimination diagrams. This might suggest the enrichment be related to the substantial extent of sediment contamination by the Mesozoic Tethyan subduction processes.展开更多
文摘A NE-direction Mesozoic shoshonitic intrusive s黫te in SE Guangxi has been identified in terms of geological, petrological and geochemical investigations. The shoshonitic intrusives are characterized by enrichment of LILE, HFSE and LREE and no obvious Nb-Ta depletion, similar to those potassic rocks formed in within-plate and rifting environments. Unlike most shoshonitic rocks forming in arc settings, the SE Guangxi shoshonitic intrusives were likely generated during regional lithosphere extension induced by upwelling of asthenosphere mantle.
基金the National Key Project for Basic Research on Tibetan Plateau(G1998040800), the National Natural Science Fountain of China (Grant Nos. 49772107, 49802005, 40103003), Key Basic (9501101-3) and Special Projects on Tibetan Plateau (No. 200101020401) of t
文摘The trachyte and basaltic trachyte and intruded granite-porphyry of Gazacun formation of Wuyu Group in central Tibet are Neogene shoshonitic rocks. They are rich in LREE, with a weak to significant Eu negative anomalies. The enriched Rb, Th, U, K, negative HFS elements Nb, Ta, Ti and P, and Sr, Nd and Pb isotope geochemistry suggest that the volcanic rocks of Wuyu Group originated from the partial melting of lower crust of the Gangdese belt, with the involvement of the Tethyan oceanic crust. It implies that the north-subducted Tethys ocean crust have arrived to the lower crust of Gangdese belt and recycled in the Neogene magmatism.
基金the State Key Basic Research of China(2001CB409803)the National Natural Science Foundation of China(40373017) National 305 Project of Xinjiang(96-915-03-02).
文摘The late Paleozoic adakitic rocks are closely associated with the shoshonitic volcanic rocks in the western Tianshan Mountains, China, both spatially and temporally. The magmatic rocks were formed during the period from the middle to the late Permian with isotopic ages of 248-268 Ma. The 87Sr/86Sr initial ratios of the rocks are low in a narrow variation range (-0.7050). The 143Nd/144Nd initial ratios are high (-0.51240) with positive εND(t) values (+1.28-+4.92). In the εNd(t)-(87Sr/86Sr)i diagram they fall in the first quadrant. The association of the shoshonitic and adakitic rocks can be interpreted by a two-stage model: the shoshonitic volcanic rocks were formed through long-term fractional crystallization of underplated basaltic magma, while the following partial melting of the residual phases formed the adakitic rocks.
基金tional and CAS Tibet Research Project" (G1999043203, G1998040800) and CAS (kz952-S1-414).
文摘The Cenozoic magmatic rocks of shoshonitic series in the eastern Qinghai-Tibet Plateau include potassic alkaline plutonic rocks, volcanic rocks, lamprophyres and acidic porphyries. Analytical results show that these different lithological rocks are extremely similar in Sr, Nd and Pb isotopic compositions with the range of 0.705 187-0.707 254 for 87Sr/86Sr, 0.512 305-0.512 630 for 143Nd/144Nd, 18.53-18.97 for 206Pb/204Pb, 15.51-15.72 for 207Pb/204Pb and 38.38-39.24 for 208Pb/204Pb. They are isotopically similar to the EMU end-member. This indicates that mantle metasomatism must have taken place in their source region. The formation of these particular rocks is related to crustal thinning and mantle upwelling in a large-scale strike-slip and pull-apart fault zone at about 40 Ma in northern and eastern Qinghai-Tibet Plateau.
基金A Minor Research Project Grant of UGCResearch Grant of the University of Calcutta
文摘Many elongated, lenticular plutons of porphyritic granitoids are distributed mainly near the southern and northern margin of the Chhotanagpur Gneissic Complex (CGC) which belongs to the EW to ENE-WSW tending 1500 km long Proterozoic orogenic belt amalgamat ng the North and South Indian cratonic blocks. The late Grenvillian (1071 ±64 Ma) Raghunathpur porphyritic granitoid gneiss (PGG) batholith comprising alkali feldspar granite, granite, granodiorite, tonalite, quartz syenite and quartz monzonite intruded into the granitoid gneisses of southeastern part of CGC in the Purulia district, West Bengal and is aligned with ENE-WSW trending North Purulia sr^ear zone, Mineral chemistry, geochemistry, physical condition of crystallization and petrogenetic model of Raghunathpur PGG have been discussed for the first time. The petrographic and geochemical features (including major and trace- elements, mineral chemistry and S7Sr/S6Sr ratio) suggest these granitoids to be classified as the shosh- onitic type. Raghunathpur batholith was emplaced at around 800 ~C and at 6 kbar pressure tectonic discrimination diagrams reveal a post-collision tectonic setting while structural studies reveal its emplacement in the extensional fissure of North Purulia shear zone. l'he Raghunathpur granitoid is compared with some similar granitoids of Europe and China to draw its petrogenetic model. Hybridi- zation of mantle-generated enriched mafic magma and crustal magma at lower crust and later fractional crystallization is proposed for the petrogenesis of this PGG. Mafic magma generated in a post-collisional extension possibly because of delamination of subducting slab. Raghunathpur batholith had emplaced in the CGC during the final amalgamation (~ 1.0 Ga) of the North and South Indian cratonic blocks. Granitoid magma, after its generation at depth, was transported to its present level along megadyke channel, ways within shear zones.
基金financially supported by the Geological Survey Project of China(Grant Nos.1212011220458,1212011220492)
文摘We undertook zircon U-Pb dating and geochemical analyses of volcanic rocks from the Manitu Formation in the Hongol area, northeastern Inner Mongolia, to determine their age, petrogenesis and sources, which are important for understanding the Late Mesozoic tectonic evolution of the Great Xing'an Range. The volcanic rocks of the Manitu Formation from the Hongol area consist primarily of trachyandesite, based on their chemical compositions. The zircons from two of these trachyandesites are euhedral-subhedral in shape, display clear oscillatory growth zoning and have high Th/U ratios (0.31- 1.15), indicating a magmatic origin. The results of LA-ICP-MS zircon U-Pb dating indicate that the volcanic rocks from the Manitu Formation in the Hongol area formed during the early Early Cretaceous with ages of 138.9-140.5 Ma. The volcanic rocks are high in alkali (Na2O + K2O = 6.22-8.26 wt%), potassium (K2O = 2.49-4.58 wt%) and aluminium (Al2O3 = 14.27-15.88 wt%), whereas they are low in iron (total Fe2O3 = 3.76-6.53 wt%) and titanium (TiO2 = 1.02-1.61 wt%). These volcanic rocks are obviously enriched in large ion lithophile elements, such as Rb, Ba, Th and U, and light rare earth elements, and are depleted in high field strength elements, such as Nb, Ta and Ti with pronounced negative anomalies. Their Sr-Nd-Pb isotopic compositions show positive εNd(t) (+0.16%o t0+1.64%o) and low TDM(t) (694--767 Ma). The geochemical characteristics of these volcanic rocks suggest that they belong to a shoshonitic series and were likely generated from the partial melting of an enriched lithospheric mantle that was metasomatised by fluids released from a subducted slab during the closure of the Mongol- Okhotsk Ocean. Elemental and isotopic features reveal that fractional crystallization with the removal of ferromagnesian minerals, plagioclase, ilmenite, magnetite and apatite played an important role during the evolution of the magma. These shoshonitic rocks were produced by the partial melting of
基金financially supported by the Ministry of Sciences and Technology of China(Grant No.2022YFF0800901)the Natural Science Foundation of China(Grant Nos.92055206 and 42163007)。
文摘Cenozoic potassic-ultrapotassic igneous rocks are widespread in the southeastern Tibetan Plateau.Their petrogenesis and magmatic processes remain subject to debate in spite of numerous publications.Almost all of the Cenozoic extrusive and intrusive rocks in the Yao’an area,western Yunnan Province,SW China,are geochemically shoshonitic,collectively termed here the Yao’an Shoshonitic Complex(YSC).The YSC is located in the(south)easternmost part of the ENE-WSW-trending,~550 km-long and~250 km-wide Cenozoic magmatic zone;the latter separates the orthogonal and oblique collision belts of the India-Eurasia collision orogen.Previously published geochronological and thermochronological data revealed that the rocks of the YSC were emplaced over a short timespan of 34-32 Ma.This and our new data suggest that the primary magma of the YSC likely was formed by partial melting of ancient continental lithospheric mantle beneath the Yangtze Block.This part of the continental lithospheric mantle had likely not been modified by any oceanic subduction.Fractionation crystallization of an Mg-and Ca-bearing mineral and TiFe oxides during the magmatic evolution probably account for the variable lithologies of the YSC.
文摘The alkali-rich igneous rocks in China occur as fifteen linear distributed belts of each extending several hundreds to several thousands kilometers in length. These include most types of alkali-rich igneous rock categories discovered worldwide. The related Au, Cu large and superlarge deposits or metallogenic focus-areas include Dongping, Guilaizhuang, Yulong, ete. Direct and in-direct genetic links have been found between alkali-rich igneous rocks and Au, Cu mineralization. The petrogenesis and metallogenesis of the alkali-rich igneous rocks are mainly controlled by (1) mantle enrichment, (2) strong interaction between mantle and crust, (3) lower contens of s黮f黵, high for and high contents of volatiles, (4) the significant turn of regional tectonic framework from compress to extension and (5) the strong change of regional lithosphere structure.
文摘Cenozoic volcanism has been well studied in northern, eastern and southwestern Tibet (Coulon et al., 1986; Arnund et al., 1992; Turner et al., 1993, 1996; Deng, 1978, 1998; Miller et al., 1999, Wang et al, 2000). But the data of the Cenozoic post\|collisional volcanism in central and southern Tibet is limited (Coulon et al., 1986; Turner et al., 1996; Zhang, 1998). These potassic and ultrapotassic intrusive and extrusive rocks are regarded to be a key clue for the deep lithospheric process of the plateau after Indo\|Asian collision. Present here is the preliminary results of the rocks from Oiyug (Wuyu) basin, about 150km northeast to Shigatse. Major and trace elements of the rocks are studied and compared with the ultrapotassic and potassic (shoshonitic) rocks exposed in Lhasa block and Qiangtang terrane.(1) Geologic setting. The magmatic rocks studied are Gazacun formation of the lower part of the Pliocene Oiyug group (N 2 oy ). The cross\|section is situated in Gazacun village of Namling. Gazacun formation is underlain unconformable by the andesitic rocks of Linzizong Group [(K 2—E 2) ln ], and covered by the coarse\|grain layered sandstone and conglomerate of Zongdangcun formation. The Gazacun formation consists of mediate\|acidic volcanics, granite\|porphyry, coal\|bearing clastics, plants and sporo\|pollen.
文摘There exist intermediate to intermediate-acid shoshonitic rocks dated at 26.3- 36.7Ma in the Early Tertiary extensional basins along the NE flank of the Dali-Jianchuan section of the Honghe-Ailaoshan left-lateral strike-slip ductile shear zone, where some high- and medium-high grade metamorphosed mafic enclaves have been found. According to the P-T conditions and mineral assemblage characteristics, the enclaves are grouped into three types: type-Ⅰ, garnet diopsidite, formed at lower crust or in the transitional section between the mantle and the crust with the metamorphic condition P=(10.47-11.51)×108 Pa and T=771-932℃; type-Ⅱ, garnet- and diopside-bearing amphibolite, formed at the depth of middle to lower crust with the metamorphic condition: P=(6-10) ×108 Pa and T=780-830℃; type-Ⅲ, metamorphosed gabbro, formed at relatively higher levels than the above 2 types with lower metamorphic condition. Type-Ⅰand type-Ⅱenclaves had experienced a decompressional retrograde metamorphism caused by tectonic elevation associated with the metasomatism of SiO 2, Na 2O-rich fluid phase with the new equilibrated temperature at T=761-778℃. Geochemical evidence indicates that both deep-derived mafic enclaves and host rocks have similar EM Ⅱ properties, which are related to the involvement of subducted materials. The sustaining subduction, compression and strike-slip ductile shearing between the India plate and the Yangtze craton are the main constraints on the subcontinental mantle properties, interaction between crust and mantle, and the formation and evolution of alkali-rich magma.
文摘The middle south parts of Tancheng Lujiang deep fault zone and its vicinity are an important locality of Cu Au deposits related to Mesozoic volcanic subvolcanic magmatism in eastern China. According to their metallogenic features and ore forming conditions, copper gold deposits in this district are ascribed to two groups: the epithermal group which can be further divided into tellurium gold type, quartz adularia type and quartz manganoansiderite type; the magmatic hydrothermal group which includes porphyry Cu Au deposit, breccia pipe porphyry type Au Cu deposit and skarn type Au Cu deposit. In this paper, characteristics of six typical shoshonite hosted Cu Au deposits are outlined. Additionally, the factors that control the metallogenesis and distribution of these Cu Au deposits are discussed preliminarily.
文摘Alkali-rich intrusive rocks in western Yunnan were derived from an enriched lithospheric mantle (EMⅡ) source. The data available indicated they are alkali-rich (K-2ONa-2O>8wt%) and shoshonitic. Although formed in a within-plate environment they exhibit signatures of arc magmatic rocks, such as high amounts of LILE and LREE relative to the HFSE and HREE, and thus high Ba/Nb, Ba/Zr, Sr/Y, La/Yb ratios as well as mimic chondrite-normalized REE and primitive mantle-normalized trace element patterns of subducted sediments, and they fall in the collision- or arc-related tectonic setting field on all discrimination diagrams. This might suggest the enrichment be related to the substantial extent of sediment contamination by the Mesozoic Tethyan subduction processes.