期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
上海崇明东滩岸线演变分析及趋势预测 被引量:14
1
作者 李行 周云轩 况润元 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2010年第2期417-424,共8页
认识崇明东滩岸线的演变规律,对于崇明东滩湿地的保护和利用具有重要意义。利用面向对象的方法,选取1987年至2006年中的6景Landsat-5 TM卫星影像数据,解译出对应年份的东滩岸线。为了对较复杂的非平直岸线的变化进行建模,提出了基于地... 认识崇明东滩岸线的演变规律,对于崇明东滩湿地的保护和利用具有重要意义。利用面向对象的方法,选取1987年至2006年中的6景Landsat-5 TM卫星影像数据,解译出对应年份的东滩岸线。为了对较复杂的非平直岸线的变化进行建模,提出了基于地形梯度的正交断面方法,构建了基于图形学的分析预测模型,对岸线的演变进行分析,预测了2010年和2015年的岸线位置。结果显示:(1)崇明东滩以东南角节点为界,分为南侧的侵蚀岸段和其余的淤涨岸段,总体淤涨速率有减慢趋势,最大侵蚀速率为22.0 m/a,最大淤涨速率为247.2 m/a;(2)北侧自东旺沙水闸向东约4 km长的岸段存在明显的冲淤交替现象;(3)岸线演变受抑制区段都位于东滩两侧岛影缓流区的边界;(4)由于岸外东南侧发育有10 m深槽,除非有特殊的水动力条件出现,东滩未来的岸线将偏向东北方向演变。 展开更多
关键词 岸线演变 趋势预测 GIS 遥感 图形学方法
下载PDF
深圳市1986―2020年间海岸线动态变化特征及成因分析 被引量:13
2
作者 高梅 曾辉 《热带地理》 北大核心 2012年第3期274-279,共6页
综合利用LandsatTM影像数据、土地利用变更调查数据和城市总体规划成果资料,对深圳市1986―2020年期间海岸线变化进行回顾和预测分析,总结了海岸线动态变化区域土地利用时空动态变化的基本特征并进行了成因探讨。结果表明:深圳市在1986... 综合利用LandsatTM影像数据、土地利用变更调查数据和城市总体规划成果资料,对深圳市1986―2020年期间海岸线变化进行回顾和预测分析,总结了海岸线动态变化区域土地利用时空动态变化的基本特征并进行了成因探讨。结果表明:深圳市在1986―2020年间海岸线人为改造活动表现出明显的西强东弱的空间分异格局,其中西部海岸线即将全部被改造成人工岸线,东部还保留约100.4km的天然岸线;全市6处岸线热点变化区域累积填海造地总面积将达到108.9km^2,目前已经完成74.0km^2。缓解土地资源供需紧张矛盾、大型工程建设、水产养殖区拓展和海岸带的自然条件差异是海岸线时空动态变化的主要影响因素;深圳市大规模海岸带人为改造已经显现出一系列负面生态环境效应。 展开更多
关键词 深圳 海岸线 时空变化 土地利用 预测
下载PDF
海岸线变化速率及趋势定量分析研究 被引量:7
3
作者 赖志坤 汪卫国 +1 位作者 孙全 徐晓晖 《海洋测绘》 2011年第2期61-64,共4页
从三个层次阐述了海岸线变化趋势分析的定量计算方法,首先讨论了海岸线变化速率计算的统计分析方法,以及提出了分形维数速率的计算方法;其次分析了基于变化速率和灰色预测模型的海岸线变化趋势预测方法;最后建立了海岸线变化趋势分析的... 从三个层次阐述了海岸线变化趋势分析的定量计算方法,首先讨论了海岸线变化速率计算的统计分析方法,以及提出了分形维数速率的计算方法;其次分析了基于变化速率和灰色预测模型的海岸线变化趋势预测方法;最后建立了海岸线变化趋势分析的基本工作流程。 展开更多
关键词 海岸线 定量分析 变化速率 趋势预测
下载PDF
Changes of coastline and tidal flat and its implication for ecological protection under human activities: Take China’s Bohai Bay as an example
4
作者 Yong Li Ming-zheng Wen +3 位作者 Heng Yu Peng Yang Fei-cui Wang Fu Wang 《China Geology》 CAS CSCD 2024年第1期26-35,共10页
The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecologic... The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecological environment changes and even global changes.Based on field measurements,combined with Linear Regression(LR)model and Inverse Distance Weighing(IDW)method,this paper presents detailed analysis on the change history and trend of the shoreline and tidal flat in Bohai Bay.The shoreline faces a high erosion chance under the action of natural factors,while the tidal flat faces a different erosion and deposition patterns in Bohai Bay due to the impact of human activities.The implication of change rule for ecological protection and recovery is also discussed.Measures should be taken to protect the coastal ecological environment.The models used in this paper show a high correlation coefficient between observed and modeling data,which means that this method can be used to predict the changing trend of shoreline and tidal flat.The research results of present study can provide scientific supports for future coastal protection and management. 展开更多
关键词 shoreline Tidal flat Erosion deposition patterns Changing trend Ecological protection Human activity Linear regression model Inverse distance weighing method prediction Bohai Bay
下载PDF
Trends of Shoreline Position: An Approach to Future Prediction for Balasore Shoreline, Odisha, India
5
作者 Nilay Kanti Barman Soumendu Chatterjee Ansar Khan 《Open Journal of Marine Science》 2015年第1期13-25,共13页
The present study aims to analyze the shift in shoreline due to coastal processes and formulate available for best estimate of future shoreline positions based on precedent shorelines. Information on rates and trends ... The present study aims to analyze the shift in shoreline due to coastal processes and formulate available for best estimate of future shoreline positions based on precedent shorelines. Information on rates and trends of shoreline change can be used to improve the understanding of the underlying causes and potential effects of coastal erosion which can support informed coastal management decisions. In this paper, researchers go over the changes in the recent positions of the shoreline of the Balasore coast for the 38 years from 1975 through 2013. The study area includes the Balasore coastal region from Rasalpur to Udaypur together with Chandipur, Choumukh, Chandrabali as well as Bichitrapur. Transects wise shoreline data base were developed for approximately 67 kilometers of shoreline and erosional/accretional scenario has also been analysed by delineating the shoreline from Landsat imageries of 1975, 1980, 1990, 1995, 2000, 2005, 2010 and 2013. A simple Linear Regression Model and End Point Rate (EPR) have been adopted to take out the rate of change of shoreline and its future positions, based on empirical observations at 67 transects along the Balasore coast. It is found that the north eastern part of Balasore coast in the vicinity of Subarnarekha estuary and Chandrabali beach undergo high rates of shore line shift. The shoreline data were integrated for long- (about 17 years) and short-term (about 7 years) shift rates analysis to comprehend the shoreline change and prediction. For the prediction of future shoreline, the model has been validated with the present shoreline position (2013). The rate of shoreline movement calculated from the fixed base line to shoreline position of 1975, 1980, 1990, 1995, 2000, 2005 and 2010 and based on this, the estimated shoreline of 2013 was calculated. The estimated shoreline was compared with the actual shoreline delineated from satellite imagery of 2013. The model error or positional shift at each sample point is observed. The positional error varies from??4.82 m to 212.41 m 展开更多
关键词 Linear Regression Model End Point Rate ROOT Mean SQUARE Error shoreline Change shoreline prediction
下载PDF
Shoreline Change Prediction Model for Coastal Zone Management in Thailand 被引量:1
6
作者 Siriluk Prukpitikul Varatip Buakaew Watchara Keshdet Apisit Kongprom Nuttom Kaewpoo 《Journal of Shipping and Ocean Engineering》 2012年第4期238-243,共6页
The prediction of shoreline erosion is vital for coastal management. This study aims to utilize geo-informatics technology to increase accuracy of a shoreline prediction model along two study sites in Samutprakarn pro... The prediction of shoreline erosion is vital for coastal management. This study aims to utilize geo-informatics technology to increase accuracy of a shoreline prediction model along two study sites in Samutprakarn province and in Prachuabkirikhan province. Predicting coastline change using remote sensing together with GIS (geographic information system) is a spat^o-temporal technology, which can continuously provide perspectives of coastal areas. Due to a long term of operational period of LANDSAT satellite, it is useful to enhance accuracy of prediction model. LANDSAT-5 TM images acquired during 1999-2009 were used to produce historical shoreline vectors. Physical data were modified to be input data of digital shoreline analysis system. The model was validated. Linear regressions were applied in order to derive equations of erosion magnitude. The result presents that averaged erosion and accretion rate along Samutprakarn province was 22.30 meters/year and 2.94 meters/year, respectively. On the other hand, the average rate of coastal erosion along Prachuabkirikhan province was much lower, being 2.48 meters/year while the accretion rate was approximately 4.11 meters/year. The predicted shoreline change at Samutprakarn province in 2019 is about -132.69 ~ 0.758 meters while at Prachuabkirikhan is 40.58 ~ 0.0012 meters. In conclusion, this prediction model focused the changing of shoreline in long term and accuracy of the model could be improved by increasing number of shorelines vectors, transect intervals and resolution of satellite images. Clearly, the model is flexible and can be applied in other particular areas for coastal zone management in Thailand. 展开更多
关键词 shoreline change coastal prediction model geo-informatics technology.
下载PDF
Coastal transgression and regression from 1980 to 2020 and shoreline forecasting for 2030 and 2040,using DSAS along the southern coastal tip of Peninsular India
7
作者 S.Chrisben Sam B.Gurugnanam 《Geodesy and Geodynamics》 CSCD 2022年第6期585-594,共10页
This study explains the multi-decadal shoreline changes along the coast of Kanyakumari from 1980 to2020.The shorelines are extracted from the Landsat images to estimate the shoreline dynamics and future predictions us... This study explains the multi-decadal shoreline changes along the coast of Kanyakumari from 1980 to2020.The shorelines are extracted from the Landsat images to estimate the shoreline dynamics and future predictions using Digital Shoreline Analysis System(DSAS).By the estimation of End Point Rate(EPR)and Linear Regression Rate(LRR),it is quantified that the maximum erosion is 5.01 m/yr(EPR)and 6.13 m/yr(LRR)consistently with the maximum accretion of 3.77 m/yr(EPR)and 3.11 m/yr(LRR)along the entire coastal stretch of 77 km.The future shoreline predicted using the Kalman filter forecasted that Inayam,Periyakattuthurai and Kodimunai are highly prone to erosion with a shift of 170 m,157 m and 145 m by 2030 and 194 m,182 m and 165 m by 2040 towards the land.Also,the western coast is highly prone to erosion and it is predicted that certain villages are prone to loss of economy and livelihood.The outcome of this study may guide the coastal researchers to understand the evolution and decisionmakers to evolve with alternative sustainable management plans in the future. 展开更多
关键词 shoreline change rates Future prediction DSAS Kalman filter Erosion and accretion
下载PDF
Application of one-line model to the prediction of shoreline change
8
《Acta Oceanologica Sinica》 SCIE CAS CSCD 1997年第3期402-417,共16页
Applicationofone-linemodeltothepredictionofshorelinechangeQinChongrenandHeJiangcheng(RecivedJuly20,1995;acce... Applicationofone-linemodeltothepredictionofshorelinechangeQinChongrenandHeJiangcheng(RecivedJuly20,1995;acceptedJanuary15,199... 展开更多
关键词 shoreline APPLICATION CHANGE MODEL prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部