This paper investigates the structure of general affine subspaces of L2(Rd) . For a d × d expansive matrix A, it shows that every affine subspace can be decomposed as an orthogonal sum of spaces each of which is ...This paper investigates the structure of general affine subspaces of L2(Rd) . For a d × d expansive matrix A, it shows that every affine subspace can be decomposed as an orthogonal sum of spaces each of which is generated by dilating some shift invariant space in this affine subspace, and every non-zero and non-reducing affine subspace is the orthogonal direct sum of a reducing subspace and a purely non-reducing subspace, and every affine subspace is the orthogonal direct sum of at most three purely non-reducing subspaces when |detA| = 2.展开更多
For a backward shift invariant subspace N in H^2(Г^2), the operators Sz and Sw on N are defined by Sz = PNTz|N and Sw, = PNTw|N, where PN is the orthogonal projection from L^2(Г^2) onto N. We give a characteri...For a backward shift invariant subspace N in H^2(Г^2), the operators Sz and Sw on N are defined by Sz = PNTz|N and Sw, = PNTw|N, where PN is the orthogonal projection from L^2(Г^2) onto N. We give a characterization of N satisfying rank [Sz, Sw^*] = 1.展开更多
文摘This paper investigates the structure of general affine subspaces of L2(Rd) . For a d × d expansive matrix A, it shows that every affine subspace can be decomposed as an orthogonal sum of spaces each of which is generated by dilating some shift invariant space in this affine subspace, and every non-zero and non-reducing affine subspace is the orthogonal direct sum of a reducing subspace and a purely non-reducing subspace, and every affine subspace is the orthogonal direct sum of at most three purely non-reducing subspaces when |detA| = 2.
基金supported by Grant-in-Aid for Scientific Research (No. 16340037)Japan Society for the Promotion of Science
文摘For a backward shift invariant subspace N in H^2(Г^2), the operators Sz and Sw on N are defined by Sz = PNTz|N and Sw, = PNTw|N, where PN is the orthogonal projection from L^2(Г^2) onto N. We give a characterization of N satisfying rank [Sz, Sw^*] = 1.