This paper investigates the propagation of horizontally polarised shear waves due to a point source in a magnetoelastic self-reinforced layer lying over a heterogeneous self-reinforced half-space. The heterogeneity is...This paper investigates the propagation of horizontally polarised shear waves due to a point source in a magnetoelastic self-reinforced layer lying over a heterogeneous self-reinforced half-space. The heterogeneity is caused by consideration of quadratic variation in rigidity. The methodology employed combines an efficient derivation for Green’s functions based on algebraic transformations with the perturbation approach. Dispersion equation has been obtained in the closed form. The dispersion curves are compared for different values of magnetoelastic coupling parameters and inhomogeneity parameters. Also, the comparative study is being made through graphs to find the effect of reinforcement over the reinforced-free case on the phase velocity. It is observed that the dispersion equation is in assertion with the classical Love-type wave equation in the absence of reinforcement, magnetic field and heterogeneity. Moreover, some important peculiarities have been observed in graphs.展开更多
A dynamic solution is presented for the propagation of waves in an electric-magneto-elastic plate composed of piezoelectric, piezomagnetic materials and elastic matrix. The electric-magneto-elastic plate is polarized ...A dynamic solution is presented for the propagation of waves in an electric-magneto-elastic plate composed of piezoelectric, piezomagnetic materials and elastic matrix. The electric-magneto-elastic plate is polarized along the thickness direction. The generalized displacements are expressed as the sum of the gradient of a scalar (dilatation wave) and the curl of a vector (shear wave). With the help of dynamic equilibrium equations and geometric equations, we can obtain dynamic equations of the dilatation wave and the shear wave. The conclusion that the types of the dilatation waves and the shear waves remain unchanged after being reflected by the boundary can be obtained through the analysis of these kinetic equations. The dispersion properties and phase velocity surface of the dilatation and shear wave can be obtained by solutions of dynamic equilibrium equations. Influences of the piezoelectric and piezomagnetic parameters on wave characteristics are discussed.展开更多
This paper studies the propagation of horizontally polarized shear waves in an internal magnetoelastic monoclinic stratum with irregularity in lower interface. The stratum is sandwiched between two magnetoelastic mono...This paper studies the propagation of horizontally polarized shear waves in an internal magnetoelastic monoclinic stratum with irregularity in lower interface. The stratum is sandwiched between two magnetoelastic monoclinic semi-infinite media. Dispersion equation is obtained in a closed form. In the absence of magnetic field and irregularity of the medium, the dispersion equation agrees with the equation of classical case in three layered media. The effects of magnetic field and size of irregularity on the phase velocity are depicted by means of graphs.展开更多
文摘This paper investigates the propagation of horizontally polarised shear waves due to a point source in a magnetoelastic self-reinforced layer lying over a heterogeneous self-reinforced half-space. The heterogeneity is caused by consideration of quadratic variation in rigidity. The methodology employed combines an efficient derivation for Green’s functions based on algebraic transformations with the perturbation approach. Dispersion equation has been obtained in the closed form. The dispersion curves are compared for different values of magnetoelastic coupling parameters and inhomogeneity parameters. Also, the comparative study is being made through graphs to find the effect of reinforcement over the reinforced-free case on the phase velocity. It is observed that the dispersion equation is in assertion with the classical Love-type wave equation in the absence of reinforcement, magnetic field and heterogeneity. Moreover, some important peculiarities have been observed in graphs.
文摘A dynamic solution is presented for the propagation of waves in an electric-magneto-elastic plate composed of piezoelectric, piezomagnetic materials and elastic matrix. The electric-magneto-elastic plate is polarized along the thickness direction. The generalized displacements are expressed as the sum of the gradient of a scalar (dilatation wave) and the curl of a vector (shear wave). With the help of dynamic equilibrium equations and geometric equations, we can obtain dynamic equations of the dilatation wave and the shear wave. The conclusion that the types of the dilatation waves and the shear waves remain unchanged after being reflected by the boundary can be obtained through the analysis of these kinetic equations. The dispersion properties and phase velocity surface of the dilatation and shear wave can be obtained by solutions of dynamic equilibrium equations. Influences of the piezoelectric and piezomagnetic parameters on wave characteristics are discussed.
基金supported by the Department of Science and Technology of New Delhi(No.SR/S4/MS:436/07)
文摘This paper studies the propagation of horizontally polarized shear waves in an internal magnetoelastic monoclinic stratum with irregularity in lower interface. The stratum is sandwiched between two magnetoelastic monoclinic semi-infinite media. Dispersion equation is obtained in a closed form. In the absence of magnetic field and irregularity of the medium, the dispersion equation agrees with the equation of classical case in three layered media. The effects of magnetic field and size of irregularity on the phase velocity are depicted by means of graphs.