The new institutionalism in the organizational sociology came into being in the late 1970’s. This perspective tries to explain the resemblance in the formal structures of different organizations using the concept of ...The new institutionalism in the organizational sociology came into being in the late 1970’s. This perspective tries to explain the resemblance in the formal structures of different organizations using the concept of shared values. Its explanatory logic lies in the “legitimacy mechanism,” which refers to the power of socially shared values in casting the thinking mode or normalizing the behavior of human beings, thus able to induce or enforce organizations to adopt the organizational structures and regulations that are in accordance with the socially shared values.展开更多
In this paper, we mainly discuss the normality of two families of functions concerning shared values and proved: Let F and G be two families of functions meromorphic on a domain D C C, a1, a2, a3, a4 be four distinct...In this paper, we mainly discuss the normality of two families of functions concerning shared values and proved: Let F and G be two families of functions meromorphic on a domain D C C, a1, a2, a3, a4 be four distinct finite complex numbers. If G is normal, and for every f 9~, there exists g C G such that f(z) and g(z) share the values a1, a2, a3, a4, then F is normal on D.展开更多
In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of ...In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant, and n be a positive integer. If f(z), f(z+c), and △n cf(z) share 0 CM, then f(z+c)≡Af(z), where A(≠0) is a complex constant. Moreover, let a(z), b(z)( O) ∈ S(f) be periodic entire functions with period c and if f(z) - a(z), f(z + c) - a(z), △cn f(z) - b(z) share 0 CM, then f(z + c) ≡ f(z).展开更多
文摘The new institutionalism in the organizational sociology came into being in the late 1970’s. This perspective tries to explain the resemblance in the formal structures of different organizations using the concept of shared values. Its explanatory logic lies in the “legitimacy mechanism,” which refers to the power of socially shared values in casting the thinking mode or normalizing the behavior of human beings, thus able to induce or enforce organizations to adopt the organizational structures and regulations that are in accordance with the socially shared values.
基金Supported by National Natural Science Foundation of China(Grant No.11071074)supported by Outstanding Youth Foundation of Shanghai(Grant No.slg10015)
文摘In this paper, we mainly discuss the normality of two families of functions concerning shared values and proved: Let F and G be two families of functions meromorphic on a domain D C C, a1, a2, a3, a4 be four distinct finite complex numbers. If G is normal, and for every f 9~, there exists g C G such that f(z) and g(z) share the values a1, a2, a3, a4, then F is normal on D.
基金supported by the Natural Science Foundation of Guangdong Province in China(2014A030313422,2016A030310106,2016A030313745)
文摘In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant, and n be a positive integer. If f(z), f(z+c), and △n cf(z) share 0 CM, then f(z+c)≡Af(z), where A(≠0) is a complex constant. Moreover, let a(z), b(z)( O) ∈ S(f) be periodic entire functions with period c and if f(z) - a(z), f(z + c) - a(z), △cn f(z) - b(z) share 0 CM, then f(z + c) ≡ f(z).