期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于最小二乘法赋权的ARIMA-LSTM模型预测入境旅游人数——以上海市为例
被引量:
6
1
作者
康俊锋
符悦
+3 位作者
方雷
李咪咪
谢玉静
周朝阳
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2023年第4期508-520,共13页
为降低新冠病毒感染疫情大流行对旅游业的二次冲击,对疫情防控期间入境旅游市场的需求进行准确预测可为后期旅游业复苏提供科学依据。以上海市为研究区域,选取入境旅游人数、主要客源国、谷歌搜索指数、新增确诊病例数等数据,定量分析...
为降低新冠病毒感染疫情大流行对旅游业的二次冲击,对疫情防控期间入境旅游市场的需求进行准确预测可为后期旅游业复苏提供科学依据。以上海市为研究区域,选取入境旅游人数、主要客源国、谷歌搜索指数、新增确诊病例数等数据,定量分析疫情前后入境旅游人数的空间变化特征及时间变化趋势,并用基于最小二乘法赋权的ARIMA-LSTM模型预测疫情后的入境旅游人数。结果表明:(1)疫情发生前后,亚洲客源市场一直占据入境旅游市场的核心地位,且传统入境游客与非传统入境游客的比例约为9∶1;(2)入境旅游人数与谷歌搜索指数存在长期正相关及格兰杰因果关系,与确诊病例数无明显相关性;(3)通过对比模型评价指标发现,当ARIMA-LSTM模型的R2大于0.8时,拟合较好,预测误差较单一模型小,预测精度较单一模型高,适用于疫情前、中、后期的旅游人数恢复预测;(4)对2021—2024年入境旅游人数进行恢复预测,发现该期间入境旅游人数呈明显的U形曲线。自2022年12月疫情全面放开后,旅游业逐步恢复,预计入境旅游人数在2024年12月恢复至疫情前水平,即需1.5 a的恢复期。
展开更多
关键词
新冠病毒感染
上海旅游预测
ARIMA-LSTM模型
最小二乘法
谷歌搜索指数
下载PDF
职称材料
题名
基于最小二乘法赋权的ARIMA-LSTM模型预测入境旅游人数——以上海市为例
被引量:
6
1
作者
康俊锋
符悦
方雷
李咪咪
谢玉静
周朝阳
机构
江西理工大学土木与测绘工程学院
复旦大学环境科学与工程系
香港理工大学酒店及旅游业管理学院
江西省国防科技信息和卫星应用中心
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2023年第4期508-520,共13页
基金
国家自然科学基金资助项目(42261071,41301423)
上海市自然科学基金资助项目(21ZR1407600)。
文摘
为降低新冠病毒感染疫情大流行对旅游业的二次冲击,对疫情防控期间入境旅游市场的需求进行准确预测可为后期旅游业复苏提供科学依据。以上海市为研究区域,选取入境旅游人数、主要客源国、谷歌搜索指数、新增确诊病例数等数据,定量分析疫情前后入境旅游人数的空间变化特征及时间变化趋势,并用基于最小二乘法赋权的ARIMA-LSTM模型预测疫情后的入境旅游人数。结果表明:(1)疫情发生前后,亚洲客源市场一直占据入境旅游市场的核心地位,且传统入境游客与非传统入境游客的比例约为9∶1;(2)入境旅游人数与谷歌搜索指数存在长期正相关及格兰杰因果关系,与确诊病例数无明显相关性;(3)通过对比模型评价指标发现,当ARIMA-LSTM模型的R2大于0.8时,拟合较好,预测误差较单一模型小,预测精度较单一模型高,适用于疫情前、中、后期的旅游人数恢复预测;(4)对2021—2024年入境旅游人数进行恢复预测,发现该期间入境旅游人数呈明显的U形曲线。自2022年12月疫情全面放开后,旅游业逐步恢复,预计入境旅游人数在2024年12月恢复至疫情前水平,即需1.5 a的恢复期。
关键词
新冠病毒感染
上海旅游预测
ARIMA-LSTM模型
最小二乘法
谷歌搜索指数
Keywords
COVID-19
shanghai
tourism
forecast
ARIMA-LSTM
model
least
squares
method
Google
index
分类号
F590 [经济管理—旅游管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于最小二乘法赋权的ARIMA-LSTM模型预测入境旅游人数——以上海市为例
康俊锋
符悦
方雷
李咪咪
谢玉静
周朝阳
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2023
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部