A set of nonlinearly coupled algebraic and differential eigenvalue equations of nonlinear axisymmetric free vibration of orthotropic shallow thin spherical and conical shells are formulated following an assumed time-m...A set of nonlinearly coupled algebraic and differential eigenvalue equations of nonlinear axisymmetric free vibration of orthotropic shallow thin spherical and conical shells are formulated following an assumed time-mode approach suggested in this paper. Analytic solutions are presented and an asymptotic relation for the amplitude-frequency response of the shells is derived. The effects of geometrical and material parameters on vibrations of the shells are investigated.展开更多
In this paper, the axisymmetric nonlinear free vibration problems of cylindrically orthotropic shallow thin spherical and conical shells under uniformly distributed static loads are studied by using MWR and Lindstedt-...In this paper, the axisymmetric nonlinear free vibration problems of cylindrically orthotropic shallow thin spherical and conical shells under uniformly distributed static loads are studied by using MWR and Lindstedt-Poincare perturbation method, from which, the characteristic relation between frequency ratio and amplitude is obtained. The effects of static loads, geometric and material parameters on vibrational behavior of shells are also discussed.展开更多
The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of von Krmn and the theor...The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of von Krmn and the theory of thermoelasticity, the whole governing equations and their simplified type are derived. The time-spatial variables are separated by Galerkin's technique, thus reducing the governing equations to a system of time-dependent nonlinear ordinary differential equation. By means of regular perturbation method and multiple-scales method, the first-order approximate analytical solution for characteristic relation of frequency vs amplitude parameters along with the decay rate of amplitude are obtained, and the effects of different geometric parameters and coupling factors as well as boundary conditions on thermoelastically coupled nonlinear vibration behaviors are discussed.展开更多
The dynamic response study on thermo-magneto-elastic behavior of shallow conical shell in a time-dependent magnetic field is investigated, and the dynamic responses of displacement of shallow conical shell under mecha...The dynamic response study on thermo-magneto-elastic behavior of shallow conical shell in a time-dependent magnetic field is investigated, and the dynamic responses of displacement of shallow conical shell under mechanical loads, electromagnetic fields and temperature field coupling are analyzed. Based on Maxwell’s equations, heat conduction equation and nonlinear equations of classical plates and shells, the nonlinear dynamic response governing equations are derived. The electromagnetic field and temperature field equations are solved using variable separating technique, the nonlinear elastic field equations are solved by Galerkin method. The variation of temperature, magnetic field intensity and displacement with time under the coupling effect of the applied magnetic field and the surface uniform load were obtained. The influence of frequency of the applied magnetic field on the displacement wave forms is discussed.展开更多
Based on the variation and harmonic equations and by taking the maximum amplitude of the shell center as the perturbation parameter, nonlinear vibration of thin shallow conic shells under combined action of peripheral...Based on the variation and harmonic equations and by taking the maximum amplitude of the shell center as the perturbation parameter, nonlinear vibration of thin shallow conic shells under combined action of peripheral moment and transverse loads was solved. The linear natural frequency can be got by the first_order approximation and the more accurate nonlinear frequency is got by the second_order approximation under the action of static loads. Meanwhile the third_order approximate analytic expression is given for describing the nonlinear relation between nature frequency and peripheral moment,transverse loads, amplitude, base angle under the small deformation. Within some range, the complex and regularity of the nonlinear relation can be directly observed from the numeric results.展开更多
基于Karm an 型大挠度方程,用修正迭代法分析了均布压力下夹支正交异性圆锥扁壳的几何非线性的后屈曲行为,给出二阶近似的荷载挠度特征关系式及临界荷载,给出了三种正交异性参数对应的数值结果,分析了正交异性参数对壳体变形和屈曲荷载...基于Karm an 型大挠度方程,用修正迭代法分析了均布压力下夹支正交异性圆锥扁壳的几何非线性的后屈曲行为,给出二阶近似的荷载挠度特征关系式及临界荷载,给出了三种正交异性参数对应的数值结果,分析了正交异性参数对壳体变形和屈曲荷载的影响。展开更多
In this paper, non-symmetrical large deformation problem of a shallow conical shell is studied by two-parameter perturbation method. The third-order approximate analytical solution of the deformation of a shallow coni...In this paper, non-symmetrical large deformation problem of a shallow conical shell is studied by two-parameter perturbation method. The third-order approximate analytical solution of the deformation of a shallow conical shell subjected to linear loads is obtained and the characteristic curves of load-deflection on a perturbing point are portrayed. The similar questions of other kind of shell and plate can be discussed by using this paper's method. As the examples, the large deflection of plate and shallow conical shells with different initial deflections is discussed.展开更多
基金Project supported by the National Natural Science Foundation of China
文摘A set of nonlinearly coupled algebraic and differential eigenvalue equations of nonlinear axisymmetric free vibration of orthotropic shallow thin spherical and conical shells are formulated following an assumed time-mode approach suggested in this paper. Analytic solutions are presented and an asymptotic relation for the amplitude-frequency response of the shells is derived. The effects of geometrical and material parameters on vibrations of the shells are investigated.
文摘In this paper, the axisymmetric nonlinear free vibration problems of cylindrically orthotropic shallow thin spherical and conical shells under uniformly distributed static loads are studied by using MWR and Lindstedt-Poincare perturbation method, from which, the characteristic relation between frequency ratio and amplitude is obtained. The effects of static loads, geometric and material parameters on vibrational behavior of shells are also discussed.
文摘The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of von Krmn and the theory of thermoelasticity, the whole governing equations and their simplified type are derived. The time-spatial variables are separated by Galerkin's technique, thus reducing the governing equations to a system of time-dependent nonlinear ordinary differential equation. By means of regular perturbation method and multiple-scales method, the first-order approximate analytical solution for characteristic relation of frequency vs amplitude parameters along with the decay rate of amplitude are obtained, and the effects of different geometric parameters and coupling factors as well as boundary conditions on thermoelastically coupled nonlinear vibration behaviors are discussed.
文摘The dynamic response study on thermo-magneto-elastic behavior of shallow conical shell in a time-dependent magnetic field is investigated, and the dynamic responses of displacement of shallow conical shell under mechanical loads, electromagnetic fields and temperature field coupling are analyzed. Based on Maxwell’s equations, heat conduction equation and nonlinear equations of classical plates and shells, the nonlinear dynamic response governing equations are derived. The electromagnetic field and temperature field equations are solved using variable separating technique, the nonlinear elastic field equations are solved by Galerkin method. The variation of temperature, magnetic field intensity and displacement with time under the coupling effect of the applied magnetic field and the surface uniform load were obtained. The influence of frequency of the applied magnetic field on the displacement wave forms is discussed.
文摘Based on the variation and harmonic equations and by taking the maximum amplitude of the shell center as the perturbation parameter, nonlinear vibration of thin shallow conic shells under combined action of peripheral moment and transverse loads was solved. The linear natural frequency can be got by the first_order approximation and the more accurate nonlinear frequency is got by the second_order approximation under the action of static loads. Meanwhile the third_order approximate analytic expression is given for describing the nonlinear relation between nature frequency and peripheral moment,transverse loads, amplitude, base angle under the small deformation. Within some range, the complex and regularity of the nonlinear relation can be directly observed from the numeric results.
文摘In this paper, non-symmetrical large deformation problem of a shallow conical shell is studied by two-parameter perturbation method. The third-order approximate analytical solution of the deformation of a shallow conical shell subjected to linear loads is obtained and the characteristic curves of load-deflection on a perturbing point are portrayed. The similar questions of other kind of shell and plate can be discussed by using this paper's method. As the examples, the large deflection of plate and shallow conical shells with different initial deflections is discussed.