A super-resolution enhancement algorithm was proposed based on the combination of fractional calculus and Projection onto Convex Sets(POCS)for unmanned aerial vehicles(UAVs)images.The representative problems of UAV im...A super-resolution enhancement algorithm was proposed based on the combination of fractional calculus and Projection onto Convex Sets(POCS)for unmanned aerial vehicles(UAVs)images.The representative problems of UAV images including motion blur,fisheye effect distortion,overexposed,and so on can be improved by the proposed algorithm.The fractional calculus operator is used to enhance the high-resolution and low-resolution reference frames for POCS.The affine transformation parameters between low-resolution images and reference frame are calculated by Scale Invariant Feature Transform(SIFT)for matching.The point spread function of POCS is simulated by a fractional integral filter instead of Gaussian filter for more clarity of texture and detail.The objective indices and subjective effect are compared between the proposed and other methods.The experimental results indicate that the proposed method outperforms other algorithms in most cases,especially in the structure and detail clarity of the reconstructed images.展开更多
目的无人机摄像资料的分辨率直接影响目标识别与信息获取,所以摄像分辨率的提高具有重大意义。为了改善无人机侦察视频质量,针对目前无人机摄像、照相数据的特点,提出一种无人机侦察视频超分辨率重建方法。方法首先提出基于AGAST-Differ...目的无人机摄像资料的分辨率直接影响目标识别与信息获取,所以摄像分辨率的提高具有重大意义。为了改善无人机侦察视频质量,针对目前无人机摄像、照相数据的特点,提出一种无人机侦察视频超分辨率重建方法。方法首先提出基于AGAST-Difference与Fast Retina Keypoint(FREAK)的特征匹配算法对视频目标帧与相邻帧之间配准,然后提出匹配区域搜索方法找到目标帧与航片的对应关系,利用航片对视频帧进行高频补偿,最后采用凸集投影方法对补偿后视频帧进行迭代优化。结果基于AGAST-Difference与FREAK的特征匹配算法在尺度、旋转、视点等变化及运行速度上存在很大优势,匹配区域搜索方法使无人机视频的高频补偿连续性更好,凸集投影迭代优化提高了重建的边缘保持能力,与一种简单有效的视频序列超分辨率复原算法相比,本文算法重建质量提高约4 d B,运行速度提高约5倍。结论提出了一种针对无人机的视频超分辨率重建方法,分析了无人机视频超分辨率问题的核心所在,并且提出基于AGAST-Difference与FREAK的特征匹配算法与匹配区域搜索方法来解决图像配准与高频补偿问题。实验结果表明,本文算法强化了重建图像的一致性与保真度,特别是对图像边缘细节部分等效果极为明显,且处理速度更快。展开更多
基金This work is supported by the National Key Research and Development Program of China[grant number 2016YFB0502602]the National Natural Science Foundation of China[grant number 61471272]the Natural Science Foundation of Hubei Province,China[grant number 2016CFB499].
文摘A super-resolution enhancement algorithm was proposed based on the combination of fractional calculus and Projection onto Convex Sets(POCS)for unmanned aerial vehicles(UAVs)images.The representative problems of UAV images including motion blur,fisheye effect distortion,overexposed,and so on can be improved by the proposed algorithm.The fractional calculus operator is used to enhance the high-resolution and low-resolution reference frames for POCS.The affine transformation parameters between low-resolution images and reference frame are calculated by Scale Invariant Feature Transform(SIFT)for matching.The point spread function of POCS is simulated by a fractional integral filter instead of Gaussian filter for more clarity of texture and detail.The objective indices and subjective effect are compared between the proposed and other methods.The experimental results indicate that the proposed method outperforms other algorithms in most cases,especially in the structure and detail clarity of the reconstructed images.
文摘目的无人机摄像资料的分辨率直接影响目标识别与信息获取,所以摄像分辨率的提高具有重大意义。为了改善无人机侦察视频质量,针对目前无人机摄像、照相数据的特点,提出一种无人机侦察视频超分辨率重建方法。方法首先提出基于AGAST-Difference与Fast Retina Keypoint(FREAK)的特征匹配算法对视频目标帧与相邻帧之间配准,然后提出匹配区域搜索方法找到目标帧与航片的对应关系,利用航片对视频帧进行高频补偿,最后采用凸集投影方法对补偿后视频帧进行迭代优化。结果基于AGAST-Difference与FREAK的特征匹配算法在尺度、旋转、视点等变化及运行速度上存在很大优势,匹配区域搜索方法使无人机视频的高频补偿连续性更好,凸集投影迭代优化提高了重建的边缘保持能力,与一种简单有效的视频序列超分辨率复原算法相比,本文算法重建质量提高约4 d B,运行速度提高约5倍。结论提出了一种针对无人机的视频超分辨率重建方法,分析了无人机视频超分辨率问题的核心所在,并且提出基于AGAST-Difference与FREAK的特征匹配算法与匹配区域搜索方法来解决图像配准与高频补偿问题。实验结果表明,本文算法强化了重建图像的一致性与保真度,特别是对图像边缘细节部分等效果极为明显,且处理速度更快。