Consider the continuous map f : x → X and the continuous map f of K,(X) into itself induced by f, where X is a metric space and K(X) the space of all non-empty compact subsets of x endowed with the Hausdorff metric. ...Consider the continuous map f : x → X and the continuous map f of K,(X) into itself induced by f, where X is a metric space and K(X) the space of all non-empty compact subsets of x endowed with the Hausdorff metric. According to the questions whether the chaoticity of f implies the chaoticity of f posed by Roman-Flores and when the chaoticity of f implies the chaoticity of f posed by Fedeli, we investigate the relations between f and f in the related dynamical properties such as transitivity, weakly mixing and mixing, etc. And by using the obtained results, we give the satisfied answers to Roman-Flores's question and Fedeli's question.展开更多
By using cone-directed contingent derivatives, the unified necessary and sufficient optimality conditions are given for weakly and strongly minimal elements respectively in generalized preinvex set-valued optimization.
The existence conditions of globally proper efficient points and a useful property of ic- cone-convexlike set-valued maps are obtained. Under the assumption of the ic-cone-convexlikeness, the optimality conditions for...The existence conditions of globally proper efficient points and a useful property of ic- cone-convexlike set-valued maps are obtained. Under the assumption of the ic-cone-convexlikeness, the optimality conditions for globally proper efficient solutions are established in terms of Lagrange multipliers. The new concept of globally proper saddle-point for an appropriate set-valued Lagrange map is introduced and used to characterize the globally proper efficient solutions. The results which are obtained in this paper are proven under the conditions that the ordering cone need not to have a nonempty interior.展开更多
In this paper, we study Henig efficiency in vector optimization with nearly cone-subconvexlike set-valued function. The existence of Henig efficient point is proved and characterization of Henig efficiency is establis...In this paper, we study Henig efficiency in vector optimization with nearly cone-subconvexlike set-valued function. The existence of Henig efficient point is proved and characterization of Henig efficiency is established using the method of Lagrangian multiplier. As an interesting application of the results in this paper, we establish a Lagrange multiplier theorem for super efficiency in vector optimization with nearly conesubconvexlike set-valued function.展开更多
In complete metric spaces, the common fixed point theorems for sequences of φ-type contraction set-valued mappings are established, and the corresponding random com- mon fixed point theorems for set-valued mappings a...In complete metric spaces, the common fixed point theorems for sequences of φ-type contraction set-valued mappings are established, and the corresponding random com- mon fixed point theorems for set-valued mappings are also obtained.展开更多
This paper studies the problem of radar target recognition based on radar cross section(RCS)observation sequence.First,the authors compute the discrete wavelet transform of RCS observation sequence and extract a valid...This paper studies the problem of radar target recognition based on radar cross section(RCS)observation sequence.First,the authors compute the discrete wavelet transform of RCS observation sequence and extract a valid statistical feature vector containing five components.These five components represent five different features of the radar target.Second,the authors establish a set-valued model to represent the relation between the feature vector and the authenticity of the radar target.By set-valued identification method,the authors can estimate the system parameter,based on which the recognition criteria is given.In order to illustrate the efficiency of the proposed recognition method,extensive simulations are given finally assuming that the true target is a cone frustum and the RCS of the false target is normally distributed.The results show that the set-valued identification method has a higher recognition rate than the traditional fuzzy classification method and evidential reasoning method.展开更多
This paper deals with Henig globally efficiency in vector optimization involving generalized cone-preinvex set-valued mapping. Some properties of generalized cone-preinvex set-valued map are derived. It also disclose ...This paper deals with Henig globally efficiency in vector optimization involving generalized cone-preinvex set-valued mapping. Some properties of generalized cone-preinvex set-valued map are derived. It also disclose the closed relationships between Henig globally efficiency of generalized conepreinvex set-valued optimization problem and Henig globally efficiency of a kind of vector variational inequality.展开更多
By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a ne...By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a new version of Ekeland's variational principle for set-valued maps, which is expressed by the existence of strict approximate minimizer for a set-valued optimization problem. In this paper, we give an improvement of Ha's version of set-valued Ekeland's variational principle. Our proof is direct and it need not use Dancs-Hegedus-Medvegyev theorem. From the improved Ha's version, we deduce a Caristi-Kirk's fixed point theorem and a Takahashi's nonconvex minimization theorem for set-valued maps. Moreover, we prove that the above three theorems are equivalent to each other.展开更多
A modified Gauss-type Proximal Point Algorithm (modified GG-PPA) is presented in this paper for solving the generalized equations like 0 ∈T(x), where T is a set-valued mapping acts between two different Bana...A modified Gauss-type Proximal Point Algorithm (modified GG-PPA) is presented in this paper for solving the generalized equations like 0 ∈T(x), where T is a set-valued mapping acts between two different Banach spaces X and Y. By considering some necessary assumptions, we show the existence of any sequence generated by the modified GG-PPA and prove the semi-local and local convergence results by using metrically regular mapping. In addition, we give a numerical example to justify the result of semi-local convergence.展开更多
Some new continuous selection theorems are first proved in noncompact topological spaces. As applications, some new collectively fixed point theorems and coincidence theorems for two families of set-valued mappings de...Some new continuous selection theorems are first proved in noncompact topological spaces. As applications, some new collectively fixed point theorems and coincidence theorems for two families of set-valued mappings defined on product space of noncompact topological spaces are obtained under very weak assumptions. These results generalize many known results in recent literature.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
In this paper,the dynamics(including shadowing property,expansiveness,topological stability and entropy)of several types of upper semi-continuous set-valued maps are mainly considered from differentiable dynamical sys...In this paper,the dynamics(including shadowing property,expansiveness,topological stability and entropy)of several types of upper semi-continuous set-valued maps are mainly considered from differentiable dynamical systems points of view.It is shown that(1)if f is a hyperbolic endomorphism then for eachε>0 there exists a C^(1)-neighborhood U of f such that the induced set-valued map F_(f,U)has theε-shadowing property,and moreover,if f is an expanding endomorphism then there exists a C^(1)-neighborhood U of f such that the induced set-valued map F_(f,U)has the Lipschitz shadowing property;(2)when a set-valued map F is generated by finite expanding endomorphisms,it has the shadowing property,and moreover,if the collection of the generators has no coincidence point then F is expansive and hence is topologically stable;(3)if f is an expanding endomorphism then for eachε>0 there exists a C^(1)-neighborhood U of f such that h(F_(f,U,ε))=h(f);(4)when F is generated by finite expanding endomorphisms with no coincidence point,the entropy formula of F is given.Furthermore,the dynamics of the set-valued maps based on discontinuous maps on the interval are also considered.展开更多
This paper is concerned with the topological structure of efficient sets for optimizationproblem of set-valued mapping. It is proved that these sets are closed or. connected under someconditions on cone-continuity, co...This paper is concerned with the topological structure of efficient sets for optimizationproblem of set-valued mapping. It is proved that these sets are closed or. connected under someconditions on cone-continuity, cone-convexity and cone-quasiconvexity.展开更多
The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz Joh...The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.展开更多
The real world is filled with uncertainty,vagueness,and imprecision.The concepts we meet in everyday life are vague rather than precise.In real-world situations,if a model requires that conclusions drawn from it have ...The real world is filled with uncertainty,vagueness,and imprecision.The concepts we meet in everyday life are vague rather than precise.In real-world situations,if a model requires that conclusions drawn from it have some bearings on reality,then two major problems immediately arise,viz.real situations are not usually crisp and deterministic;complete descriptions of real systems often require more comprehensive data than human beings could recognize simultaneously,process and understand.Conventional mathematical tools which require all inferences to be exact,are not always efficient to handle imprecisions in a wide variety of practical situations.Following the latter development,a lot of attention has been paid to examining novel L-fuzzy analogues of conventional functional equations and their various applications.In this paper,new coincidence point results for single-valued mappings and an L-fuzzy set-valued map in metric spaces are proposed.Regarding novelty and generality,the obtained invariant point notions are compared with some well-known related concepts via non-trivial examples.It is observed that our principal results subsume and refine some important ones in the corresponding domains.As an application,one of our results is utilized to discussmore general existence conditions for realizing the solutions of a non-integer order inclusion model for COVID-19.展开更多
The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperatio...The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperation theorem, Kuhn-Tucker's, Lagrange's and saddle points optimality conditions, the necessary conditions are obtained for the set-valued optimization problem to attain its super efficient solutions. Also, the sufficient conditions for Kuhn-Tucker's, Lagrange's and saddle points optimality conditions are derived.展开更多
This paper summarizes the parameter estimation of systems with set-valued signals, which can be classified to three catalogs: one-time completed algorithms, iterative methods and recursive algorithms. For one-time com...This paper summarizes the parameter estimation of systems with set-valued signals, which can be classified to three catalogs: one-time completed algorithms, iterative methods and recursive algorithms. For one-time completed algorithms, empirical measure method is one of the earliest methods to estimate parameters by using set-valued signals, which has been applied to the adaptive tracking of periodic target signals. The iterative methods seek numerical solutions of the maximum likelihood estimation, which have been applied to both complex diseases diagnosis and radar target recognition. The recursive algorithms are constructed via stochastic approximation and stochastic gradient methods, which have been applied to adaptive tracking of non-periodic signals.展开更多
A kind of tangent derivative and the concepts of strong and weak * pseudoconvexity for a set-valued map are introduced. By the standard separation theorems of the convex sets and cones the optimality Fritz John condit...A kind of tangent derivative and the concepts of strong and weak * pseudoconvexity for a set-valued map are introduced. By the standard separation theorems of the convex sets and cones the optimality Fritz John condition of set-valued optimization under Benson proper efficiency is established, its sufficience is discussed. The form of the optimality conditions obtained here completely tally with the classical results when the set-valued map is specialized to be a single-valued map.展开更多
The paper is a contribution to the problem of approximating random set with values in a separable Banach space. This class of set-valued function is widely used in many areas.We investigate the properties of p-bounde... The paper is a contribution to the problem of approximating random set with values in a separable Banach space. This class of set-valued function is widely used in many areas.We investigate the properties of p-bounded integrable random set. Based on this we endow it with △p metric which can be viewed as a integral type hausdorff metric and present some approximation theorem of a class of convolution operators with respect to △p metric. Moreover we also can establish analogous theorem for other integral type operator in △p space.展开更多
Some new coincidence theorems involving admissible set-valued mappings are proved in general noncompact topological spaces. As applications, some new minimax inequalities, section theorem, best approximation theorem, ...Some new coincidence theorems involving admissible set-valued mappings are proved in general noncompact topological spaces. As applications, some new minimax inequalities, section theorem, best approximation theorem, existence theorems of weighted Nash equilibria and Pareto equilibria for multiobjective games are given in general topological spaces.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.19971035)the Innovation Foundation of Jilin University(Grant No.2004CZ051).
文摘Consider the continuous map f : x → X and the continuous map f of K,(X) into itself induced by f, where X is a metric space and K(X) the space of all non-empty compact subsets of x endowed with the Hausdorff metric. According to the questions whether the chaoticity of f implies the chaoticity of f posed by Roman-Flores and when the chaoticity of f implies the chaoticity of f posed by Fedeli, we investigate the relations between f and f in the related dynamical properties such as transitivity, weakly mixing and mixing, etc. And by using the obtained results, we give the satisfied answers to Roman-Flores's question and Fedeli's question.
基金Supported by the National Natural Science Foundation of China (10571035)
文摘By using cone-directed contingent derivatives, the unified necessary and sufficient optimality conditions are given for weakly and strongly minimal elements respectively in generalized preinvex set-valued optimization.
基金Supported by Natural Science Foundation of Ningxia (No.NZ0959)Natural Science Foundation of the State Ethnic Affairs Commission of PRC (No.09BF06)Natural Science Foundation for the Youth (No.10901004)
文摘The existence conditions of globally proper efficient points and a useful property of ic- cone-convexlike set-valued maps are obtained. Under the assumption of the ic-cone-convexlikeness, the optimality conditions for globally proper efficient solutions are established in terms of Lagrange multipliers. The new concept of globally proper saddle-point for an appropriate set-valued Lagrange map is introduced and used to characterize the globally proper efficient solutions. The results which are obtained in this paper are proven under the conditions that the ordering cone need not to have a nonempty interior.
基金the Natural Science Foundation of Zhejiang Province,China(M103089)
文摘In this paper, we study Henig efficiency in vector optimization with nearly cone-subconvexlike set-valued function. The existence of Henig efficient point is proved and characterization of Henig efficiency is established using the method of Lagrangian multiplier. As an interesting application of the results in this paper, we establish a Lagrange multiplier theorem for super efficiency in vector optimization with nearly conesubconvexlike set-valued function.
基金Foundation item: Supported by the Science Foundation from the Ministry of Education of Jiangsu Province(04KJD110168, 06KJBll0107)
文摘In complete metric spaces, the common fixed point theorems for sequences of φ-type contraction set-valued mappings are established, and the corresponding random com- mon fixed point theorems for set-valued mappings are also obtained.
基金supported by the National Natural Science Foundation of China under Grant No.61174042the National Key Basic Research Program of China(973 Program) under Grant No.2014CB845301
文摘This paper studies the problem of radar target recognition based on radar cross section(RCS)observation sequence.First,the authors compute the discrete wavelet transform of RCS observation sequence and extract a valid statistical feature vector containing five components.These five components represent five different features of the radar target.Second,the authors establish a set-valued model to represent the relation between the feature vector and the authenticity of the radar target.By set-valued identification method,the authors can estimate the system parameter,based on which the recognition criteria is given.In order to illustrate the efficiency of the proposed recognition method,extensive simulations are given finally assuming that the true target is a cone frustum and the RCS of the false target is normally distributed.The results show that the set-valued identification method has a higher recognition rate than the traditional fuzzy classification method and evidential reasoning method.
基金supported by the Natural Science Foundation of China under Grant No.11361001Ministry of Education Science and technology key projects under Grant No.212204+1 种基金the Natural Science Foundation of Ningxia under Grant No.NZ12207the Science and Technology key project of Ningxia institutions of higher learning under Grant No.NGY2012092
文摘This paper deals with Henig globally efficiency in vector optimization involving generalized cone-preinvex set-valued mapping. Some properties of generalized cone-preinvex set-valued map are derived. It also disclose the closed relationships between Henig globally efficiency of generalized conepreinvex set-valued optimization problem and Henig globally efficiency of a kind of vector variational inequality.
基金Supported by National Natural Science Foundation of China(Grant No.10871141)
文摘By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a new version of Ekeland's variational principle for set-valued maps, which is expressed by the existence of strict approximate minimizer for a set-valued optimization problem. In this paper, we give an improvement of Ha's version of set-valued Ekeland's variational principle. Our proof is direct and it need not use Dancs-Hegedus-Medvegyev theorem. From the improved Ha's version, we deduce a Caristi-Kirk's fixed point theorem and a Takahashi's nonconvex minimization theorem for set-valued maps. Moreover, we prove that the above three theorems are equivalent to each other.
文摘A modified Gauss-type Proximal Point Algorithm (modified GG-PPA) is presented in this paper for solving the generalized equations like 0 ∈T(x), where T is a set-valued mapping acts between two different Banach spaces X and Y. By considering some necessary assumptions, we show the existence of any sequence generated by the modified GG-PPA and prove the semi-local and local convergence results by using metrically regular mapping. In addition, we give a numerical example to justify the result of semi-local convergence.
基金This project is supported by the NSF of Sichuan Education Department of China(2003A081)and SZD0406
文摘Some new continuous selection theorems are first proved in noncompact topological spaces. As applications, some new collectively fixed point theorems and coincidence theorems for two families of set-valued mappings defined on product space of noncompact topological spaces are obtained under very weak assumptions. These results generalize many known results in recent literature.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
文摘In this paper,the dynamics(including shadowing property,expansiveness,topological stability and entropy)of several types of upper semi-continuous set-valued maps are mainly considered from differentiable dynamical systems points of view.It is shown that(1)if f is a hyperbolic endomorphism then for eachε>0 there exists a C^(1)-neighborhood U of f such that the induced set-valued map F_(f,U)has theε-shadowing property,and moreover,if f is an expanding endomorphism then there exists a C^(1)-neighborhood U of f such that the induced set-valued map F_(f,U)has the Lipschitz shadowing property;(2)when a set-valued map F is generated by finite expanding endomorphisms,it has the shadowing property,and moreover,if the collection of the generators has no coincidence point then F is expansive and hence is topologically stable;(3)if f is an expanding endomorphism then for eachε>0 there exists a C^(1)-neighborhood U of f such that h(F_(f,U,ε))=h(f);(4)when F is generated by finite expanding endomorphisms with no coincidence point,the entropy formula of F is given.Furthermore,the dynamics of the set-valued maps based on discontinuous maps on the interval are also considered.
文摘This paper is concerned with the topological structure of efficient sets for optimizationproblem of set-valued mapping. It is proved that these sets are closed or. connected under someconditions on cone-continuity, cone-convexity and cone-quasiconvexity.
基金the National Natural Science Foundation(69972036) and the Natural Science Foundation of Shanxi province(995L02)
文摘The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia has funded this project under Grant Number(G:220-247-1443).
文摘The real world is filled with uncertainty,vagueness,and imprecision.The concepts we meet in everyday life are vague rather than precise.In real-world situations,if a model requires that conclusions drawn from it have some bearings on reality,then two major problems immediately arise,viz.real situations are not usually crisp and deterministic;complete descriptions of real systems often require more comprehensive data than human beings could recognize simultaneously,process and understand.Conventional mathematical tools which require all inferences to be exact,are not always efficient to handle imprecisions in a wide variety of practical situations.Following the latter development,a lot of attention has been paid to examining novel L-fuzzy analogues of conventional functional equations and their various applications.In this paper,new coincidence point results for single-valued mappings and an L-fuzzy set-valued map in metric spaces are proposed.Regarding novelty and generality,the obtained invariant point notions are compared with some well-known related concepts via non-trivial examples.It is observed that our principal results subsume and refine some important ones in the corresponding domains.As an application,one of our results is utilized to discussmore general existence conditions for realizing the solutions of a non-integer order inclusion model for COVID-19.
基金Supported by the National Natural Science Foundation of China (10461007)the Science and Technology Foundation of the Education Department of Jiangxi Province (GJJ09069)
文摘The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperation theorem, Kuhn-Tucker's, Lagrange's and saddle points optimality conditions, the necessary conditions are obtained for the set-valued optimization problem to attain its super efficient solutions. Also, the sufficient conditions for Kuhn-Tucker's, Lagrange's and saddle points optimality conditions are derived.
基金Supported by the National Natural Science Foundation of China(Nos.61803370,61622309)the China Postdoctoral Science Foundation(No.2018M630216)the National Key Research and Development Program of China(No.2016YFB0901902)
文摘This paper summarizes the parameter estimation of systems with set-valued signals, which can be classified to three catalogs: one-time completed algorithms, iterative methods and recursive algorithms. For one-time completed algorithms, empirical measure method is one of the earliest methods to estimate parameters by using set-valued signals, which has been applied to the adaptive tracking of periodic target signals. The iterative methods seek numerical solutions of the maximum likelihood estimation, which have been applied to both complex diseases diagnosis and radar target recognition. The recursive algorithms are constructed via stochastic approximation and stochastic gradient methods, which have been applied to adaptive tracking of non-periodic signals.
文摘A kind of tangent derivative and the concepts of strong and weak * pseudoconvexity for a set-valued map are introduced. By the standard separation theorems of the convex sets and cones the optimality Fritz John condition of set-valued optimization under Benson proper efficiency is established, its sufficience is discussed. The form of the optimality conditions obtained here completely tally with the classical results when the set-valued map is specialized to be a single-valued map.
基金the the Morningside Center of Mathematics of the Chinese Academy of Sciencesthe Program of "One Hundred Distinguished Chinese Scientists" of the Chinese Academy of Sciences.
文摘 The paper is a contribution to the problem of approximating random set with values in a separable Banach space. This class of set-valued function is widely used in many areas.We investigate the properties of p-bounded integrable random set. Based on this we endow it with △p metric which can be viewed as a integral type hausdorff metric and present some approximation theorem of a class of convolution operators with respect to △p metric. Moreover we also can establish analogous theorem for other integral type operator in △p space.
基金Supported by National Natural Science Foundation of China(10471113)Natural Science Foundation Project of CQ CSTC(2005BB2097)
文摘Some new coincidence theorems involving admissible set-valued mappings are proved in general noncompact topological spaces. As applications, some new minimax inequalities, section theorem, best approximation theorem, existence theorems of weighted Nash equilibria and Pareto equilibria for multiobjective games are given in general topological spaces.