合成了一种新型环氧树脂固化剂1,4-二(4-氨基苯-1-氧)正丁烷(DDBE),并采用FTIR、1 H NMR手段对其结构进行表征和确认。采用非等温差示扫描量热法(DSC)研究了N,N,N′,N′-四缩水甘油基-4,4′-二氨基二苯甲烷(TGDDM)/DDBE体系的固化反应...合成了一种新型环氧树脂固化剂1,4-二(4-氨基苯-1-氧)正丁烷(DDBE),并采用FTIR、1 H NMR手段对其结构进行表征和确认。采用非等温差示扫描量热法(DSC)研究了N,N,N′,N′-四缩水甘油基-4,4′-二氨基二苯甲烷(TGDDM)/DDBE体系的固化反应动力学,根据Kissinger方程计算体系的活化能为58.5kJ·mol-1;采用Málek法进行模型拟合动力学分析,结果表明:其中的esták-Berggren模型的拟合曲线与实验的DSC曲线吻合,确定了体系的固化反应动力学参数和方程。DSC测试TGDDM/DDBE固化物玻璃化转变温度为195℃。展开更多
Mn1.8Co0.1Mg0.1P2O7·2H2O was synthesized via hydrothermal method and the thermal dehydration product was confirmed to be Mn1.8Co0.1Mg0.1P2O7.The thermogravimetry/differential thermogravimetry/differential thermal...Mn1.8Co0.1Mg0.1P2O7·2H2O was synthesized via hydrothermal method and the thermal dehydration product was confirmed to be Mn1.8Co0.1Mg0.1P2O7.The thermogravimetry/differential thermogravimetry/differential thermal analysis,Fourier transform infrared,atomic absorption spectrophotometry,X-ray diffraction and scanning electron microscopy techniques were employed for sample characterization.Non-isothermal kinetics was studied under air atmosphere at four heating rates and the single thermal dehydration process was observed.Iterative Kissinger-Akahira-Sunose equation was used to calculate the apparent activation energy Eαvalues.Dehydration process was confirmed to be a single-step kinetic process with the unique kinetic triplets.Málek’s equations were used to determine the kinetic model f(α)and pre-exponential factor A.?esták-Berggren model was suggested to be the mechanism function for the dehydration process.The best fit led to the kinetic triplets of Eα=(79.97±6.51)k J/mol,ln A=16.83 and f(α)=α^0.520(1-α)^1.255(αis the extent of conversion).The thermodynamic functions of activation were calculated using activated complex theory together with A value.展开更多
文摘合成了一种新型环氧树脂固化剂1,4-二(4-氨基苯-1-氧)正丁烷(DDBE),并采用FTIR、1 H NMR手段对其结构进行表征和确认。采用非等温差示扫描量热法(DSC)研究了N,N,N′,N′-四缩水甘油基-4,4′-二氨基二苯甲烷(TGDDM)/DDBE体系的固化反应动力学,根据Kissinger方程计算体系的活化能为58.5kJ·mol-1;采用Málek法进行模型拟合动力学分析,结果表明:其中的esták-Berggren模型的拟合曲线与实验的DSC曲线吻合,确定了体系的固化反应动力学参数和方程。DSC测试TGDDM/DDBE固化物玻璃化转变温度为195℃。
文摘Mn1.8Co0.1Mg0.1P2O7·2H2O was synthesized via hydrothermal method and the thermal dehydration product was confirmed to be Mn1.8Co0.1Mg0.1P2O7.The thermogravimetry/differential thermogravimetry/differential thermal analysis,Fourier transform infrared,atomic absorption spectrophotometry,X-ray diffraction and scanning electron microscopy techniques were employed for sample characterization.Non-isothermal kinetics was studied under air atmosphere at four heating rates and the single thermal dehydration process was observed.Iterative Kissinger-Akahira-Sunose equation was used to calculate the apparent activation energy Eαvalues.Dehydration process was confirmed to be a single-step kinetic process with the unique kinetic triplets.Málek’s equations were used to determine the kinetic model f(α)and pre-exponential factor A.?esták-Berggren model was suggested to be the mechanism function for the dehydration process.The best fit led to the kinetic triplets of Eα=(79.97±6.51)k J/mol,ln A=16.83 and f(α)=α^0.520(1-α)^1.255(αis the extent of conversion).The thermodynamic functions of activation were calculated using activated complex theory together with A value.