期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合PCA、多尺度分割及SVM的ASTER遥感蚀变信息提取
被引量:
12
1
作者
唐淑兰
曹建农
王凯
《遥感学报》
EI
CSCD
北大核心
2021年第2期653-664,共12页
为了利用遥感影像进行更加精确的找矿预测,本文选择新疆东天山尾亚地区ASTER数据进行矿化蚀变信息提取方法研究。为了提高信息提取精度,本文提出了结合主成分分析(PCA)、多尺度分割和支持向量机(SVM)的遥感矿化蚀变信息提取方法。首先,...
为了利用遥感影像进行更加精确的找矿预测,本文选择新疆东天山尾亚地区ASTER数据进行矿化蚀变信息提取方法研究。为了提高信息提取精度,本文提出了结合主成分分析(PCA)、多尺度分割和支持向量机(SVM)的遥感矿化蚀变信息提取方法。首先,分析ASTER数据的特征,选取各矿化蚀变信息的特征波段,对组合波段进行主成分分析,获得主分量图像;然后,对各主分量图像进行多尺度分割,并获得分割之后的均值图像;接着,提取训练样本,利用SVM对训练样本进行训练,采用试验方法求得最优核参数和松弛变量,构造最优SVM模型;最后,运用最优SVM模型完成矿化蚀变信息的提取。进行主成分分析时,铁染蚀变信息选择Band1、2、3、4组合,Al-OH基团蚀变信息选择Band 1、4、6、7组合,OH和CO32-基团蚀变信息采用Band 1、2、8、9组合。在运行SVM时采用了序列最小优化算法(SMO)进行求解,速度提高了12%。实验结果表明,与波段比值法、主成分分析法及基于光谱角和SVM的方法等3种方法相比,本文方法提取铁染蚀变信息、Al-OH基团蚀变信息及OH和CO32-基团蚀变信息的总体精度可达到87.98%、90.01%及88.93%,Kappa系数分别为0.8011、0.8134及0.8023,与成矿区带、已知矿点和已有不同地质背景成矿特征相关性较好。
展开更多
关键词
遥感
ASTER
矿化蚀变信息提取
多尺度分割
主成分分析(PCA)
支持向量机(SVM)
序列最小优化算法(
smo
)
原文传递
题名
结合PCA、多尺度分割及SVM的ASTER遥感蚀变信息提取
被引量:
12
1
作者
唐淑兰
曹建农
王凯
机构
长安大学地球科学与资源学院
西安财经大学管理学院
中国地质调查局西安地质调查中心
出处
《遥感学报》
EI
CSCD
北大核心
2021年第2期653-664,共12页
基金
国家自然科学基金(编号:41571346)
中国地质调查局项目(编号:DD20179403,DD20190364)
+1 种基金
陕西省教育厅项目(编号:18JK0317)
西安财经大学项目(编号:16FCJH05)。
文摘
为了利用遥感影像进行更加精确的找矿预测,本文选择新疆东天山尾亚地区ASTER数据进行矿化蚀变信息提取方法研究。为了提高信息提取精度,本文提出了结合主成分分析(PCA)、多尺度分割和支持向量机(SVM)的遥感矿化蚀变信息提取方法。首先,分析ASTER数据的特征,选取各矿化蚀变信息的特征波段,对组合波段进行主成分分析,获得主分量图像;然后,对各主分量图像进行多尺度分割,并获得分割之后的均值图像;接着,提取训练样本,利用SVM对训练样本进行训练,采用试验方法求得最优核参数和松弛变量,构造最优SVM模型;最后,运用最优SVM模型完成矿化蚀变信息的提取。进行主成分分析时,铁染蚀变信息选择Band1、2、3、4组合,Al-OH基团蚀变信息选择Band 1、4、6、7组合,OH和CO32-基团蚀变信息采用Band 1、2、8、9组合。在运行SVM时采用了序列最小优化算法(SMO)进行求解,速度提高了12%。实验结果表明,与波段比值法、主成分分析法及基于光谱角和SVM的方法等3种方法相比,本文方法提取铁染蚀变信息、Al-OH基团蚀变信息及OH和CO32-基团蚀变信息的总体精度可达到87.98%、90.01%及88.93%,Kappa系数分别为0.8011、0.8134及0.8023,与成矿区带、已知矿点和已有不同地质背景成矿特征相关性较好。
关键词
遥感
ASTER
矿化蚀变信息提取
多尺度分割
主成分分析(PCA)
支持向量机(SVM)
序列最小优化算法(
smo
)
Keywords
remote
sensing
ASTER
mineralization
alteration
information
extraction
multilevel
segment
method
Principal
Component
Analysis(PCA)
Support
Vector
Machine(SVM)
sequential
minimum
optimization
(
smo
)
分类号
P627 [天文地球—地质矿产勘探]
原文传递
题名
作者
出处
发文年
被引量
操作
1
结合PCA、多尺度分割及SVM的ASTER遥感蚀变信息提取
唐淑兰
曹建农
王凯
《遥感学报》
EI
CSCD
北大核心
2021
12
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部