In order to boost contributions of power systems to a low-carbon economy,the installed capacity of renewable power generation,such as wind and photovoltaic(PV)power generation should be well planned.A bilevel formulat...In order to boost contributions of power systems to a low-carbon economy,the installed capacity of renewable power generation,such as wind and photovoltaic(PV)power generation should be well planned.A bilevel formulation is presented to optimize the proportion of wind and PV capacity in provincial power systems,in which,carbon emissions of generator units and features of renewable resources are taken into account.In the lowerlevel formulation,a time-sequence production simulation(TSPS)model that is suitable for actual power system has been adopted.In order to maximize benefits of energy conservation and emissions reduction resulting from renewable power generation,the commercial software called General Algebraic Modeling System(GAMS)is employed to optimize the annual operation of the power system.In the upper-level formulation,the optimal pattern search(OPS)algorithm is utilized to optimize the proportion of wind and PV capacity.The objective of the upper-level formulation is to maximize benefits of energy conservation and carbon emissions reductions optimized in the lowerlevel problem.Simulation results in practical provincial power systems validate the proposed model and corresponding solving algorithms.The optimization results can provide support to policy makers to make the polices related to renewable energy.展开更多
This research is focused on the analysis of the sequence stratigraphic units of F3 Block,within a wave-dominated delta of Plio–Pleistocene age.Three wells of F3 block and a 3D seismic data,are utilized in this resear...This research is focused on the analysis of the sequence stratigraphic units of F3 Block,within a wave-dominated delta of Plio–Pleistocene age.Three wells of F3 block and a 3D seismic data,are utilized in this research.The conventional techniques of 3D seismic interpretation were utilized to mark the 11 surfaces on the seismic section.Integration of seismic sequence stratigraphic interpretation,using well logs,and subsequent 3D geostatistical modeling,using seismic data,aided to evaluate the shallow hydrocarbon traps.The resulting models were obtained using System Tract and Facies models,which were generated by using sequential stimulation method and their variograms made by spherical method,moreover,these models are validated via histograms.The CDF curve generated from upscaling of well logs using geometric method,shows a good relation with less percentage of errors(1 to 2 for Facies and 3 to 4 for System Tract models)between upscaled and raw data that complements the resulted models.These approaches help us to delineate the best possible reservoir,lateral extent of system tracts(LST and/or HST)in the respective surface,and distribution of sand and shale in the delta.The clinoform break points alteration observed on seismic sections,also validates the sequence stratigraphic interpretation.The GR log-based Facies model and sequence stratigraphy-based System Tract model of SU-04-2 showed the reservoir characteristics,presence of sand bodies and majorly LST,respectively,mainly adjacent to the main fault of the studied area.Moreover,on the seismic section,SU-04-2 exhibits the presence of gas pockets at the same location that also complements the generated Facies and System Tract models.The generated models can be utilized for any similar kind of study and for the further research in the F3 block reservoir characterization.展开更多
Based on the sequence analyzing of the cloned gene Dunaliella salina UDP-glucose Dehydrogenase(DsUGD),it shows that the largest open reading frame is 1452bp,the coding protein belongs to UDP-glucose/GDP-mannose dehydr...Based on the sequence analyzing of the cloned gene Dunaliella salina UDP-glucose Dehydrogenase(DsUGD),it shows that the largest open reading frame is 1452bp,the coding protein belongs to UDP-glucose/GDP-mannose dehydrogenase family.The predicted transmembrane regions structure and signal peptides of the DsUGD show that it has one transmembrane structure and may be excretive.The results of the advanced structure analysis of DsUGD shows that it has a high identity with the previous verdict.展开更多
基金This work is jointly supported by the research and application of evaluation of priority dispatching of wind/PV generation in multi-levels,State Grid Corporation of China(No.NY71-14-038)Jiangsu Provincial Graduate Education Innovation Project(No.KYLX_0431)+1 种基金the Fundamental Research Funds for the Central Universities(No.2014B33314)National Nature Science Foundation of China(No.51407097).
文摘In order to boost contributions of power systems to a low-carbon economy,the installed capacity of renewable power generation,such as wind and photovoltaic(PV)power generation should be well planned.A bilevel formulation is presented to optimize the proportion of wind and PV capacity in provincial power systems,in which,carbon emissions of generator units and features of renewable resources are taken into account.In the lowerlevel formulation,a time-sequence production simulation(TSPS)model that is suitable for actual power system has been adopted.In order to maximize benefits of energy conservation and emissions reduction resulting from renewable power generation,the commercial software called General Algebraic Modeling System(GAMS)is employed to optimize the annual operation of the power system.In the upper-level formulation,the optimal pattern search(OPS)algorithm is utilized to optimize the proportion of wind and PV capacity.The objective of the upper-level formulation is to maximize benefits of energy conservation and carbon emissions reductions optimized in the lowerlevel problem.Simulation results in practical provincial power systems validate the proposed model and corresponding solving algorithms.The optimization results can provide support to policy makers to make the polices related to renewable energy.
文摘This research is focused on the analysis of the sequence stratigraphic units of F3 Block,within a wave-dominated delta of Plio–Pleistocene age.Three wells of F3 block and a 3D seismic data,are utilized in this research.The conventional techniques of 3D seismic interpretation were utilized to mark the 11 surfaces on the seismic section.Integration of seismic sequence stratigraphic interpretation,using well logs,and subsequent 3D geostatistical modeling,using seismic data,aided to evaluate the shallow hydrocarbon traps.The resulting models were obtained using System Tract and Facies models,which were generated by using sequential stimulation method and their variograms made by spherical method,moreover,these models are validated via histograms.The CDF curve generated from upscaling of well logs using geometric method,shows a good relation with less percentage of errors(1 to 2 for Facies and 3 to 4 for System Tract models)between upscaled and raw data that complements the resulted models.These approaches help us to delineate the best possible reservoir,lateral extent of system tracts(LST and/or HST)in the respective surface,and distribution of sand and shale in the delta.The clinoform break points alteration observed on seismic sections,also validates the sequence stratigraphic interpretation.The GR log-based Facies model and sequence stratigraphy-based System Tract model of SU-04-2 showed the reservoir characteristics,presence of sand bodies and majorly LST,respectively,mainly adjacent to the main fault of the studied area.Moreover,on the seismic section,SU-04-2 exhibits the presence of gas pockets at the same location that also complements the generated Facies and System Tract models.The generated models can be utilized for any similar kind of study and for the further research in the F3 block reservoir characterization.
文摘Based on the sequence analyzing of the cloned gene Dunaliella salina UDP-glucose Dehydrogenase(DsUGD),it shows that the largest open reading frame is 1452bp,the coding protein belongs to UDP-glucose/GDP-mannose dehydrogenase family.The predicted transmembrane regions structure and signal peptides of the DsUGD show that it has one transmembrane structure and may be excretive.The results of the advanced structure analysis of DsUGD shows that it has a high identity with the previous verdict.