期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Identification and Automatic ICA-PSO Two-Class Classification of Time Series RSN in Shaky Hand Syndrome
1
作者 S. P. Thaiyalnayaki O. Uma Maheswari 《Circuits and Systems》 2016年第8期1866-1873,共8页
Neuro-imaging techniques are used to extract and assess brain enactments. As brain activations are free to advance in an eccentric way, data driven methods are exploited for functional localization. Three motor imbala... Neuro-imaging techniques are used to extract and assess brain enactments. As brain activations are free to advance in an eccentric way, data driven methods are exploited for functional localization. Three motor imbalance subjects whose scan size were 128 × 128 × 23 and an aggregate of 110 volumes joined by three scans for nine acquisitions, who are on a normal age of 65 years and a set of 10 subject’s simulated data was subjected to examination. To fully exploit the potential, advanced signal processing methods are applied on acquired resting state functional MRI (rsfMRI) and SimTB simulated rsfMRI. An algorithm called Independent Component Analysis-Particle Swam Optimization two-class classifier for decision support is implemented. The algorithm pre-process each simulated and real time rsfMRI scans, extract independent components(IC) from smoothed output, select eigen vector for optimized minimum misclassification from both time series data and perform 2-class classification using k-means clustering. The proposed algorithm aided the classification of about 87.5% of the functional localization of shaky hand subjects of acquired rsfMRI data. The number of highly activated voxels in the sensory motor network is more in shaky hand subjects. 展开更多
关键词 Simulated RsfMRI sensory motor network k-Means ICA-PSO
下载PDF
双相情感障碍Ⅰ型患者大脑感觉运动网络功能连接分析
2
作者 朱文静 陈致宇 +5 位作者 唐文新 朱丞 梁燕 申永辉 薛丰丰 许子明 《中华行为医学与脑科学杂志》 CAS CSCD 北大核心 2022年第8期692-697,共6页
目的利用独立成分分析法(independent component analysis,ICA)分析双相情感障碍Ⅰ型(bipolar disorder-Ⅰ,BD-Ⅰ)患者感觉运动网络(sensory motor network,SMN)的功能连接(functional connectivity,FC)特征,并探究患者SMN异常与临床症... 目的利用独立成分分析法(independent component analysis,ICA)分析双相情感障碍Ⅰ型(bipolar disorder-Ⅰ,BD-Ⅰ)患者感觉运动网络(sensory motor network,SMN)的功能连接(functional connectivity,FC)特征,并探究患者SMN异常与临床症状的相关性。方法纳入18例BD-Ⅰ患者(BD-Ⅰ组)和20例年龄、性别、受教育年限相匹配的正常对照(HC组),两组均接受静息态磁共振(resting-state fMRI,rs-fMRI)扫描。基于ICA-fMRI数据,采用单样本t检验及双样本t检验对两组SMN网络内成分进行统计分析来寻找异常脑区,并利用功能网络分析(functional network connectivity,FNC)探究两组中SMN与其他脑网络间的功能连接;使用SPSS 17.0进行Pearson相关分析对异常的网络内功能连接值、网络间功能连接值与年龄、教育年限、贝克-拉范森躁狂量表(Bech-Rafaelsen mania rating scale,BRMS)得分、阳性与阴性症状量表(positive and negative syndrome scale,PANSS)得分等指标进行相关性分析。结果BD-Ⅰ组SMN内右侧中央旁小叶(MIN:x=8,y=-32,z=68,t=4.86,P<0.001)与右侧中央后回(MIN:x=41,y=-26,z=53,t=3.33,P<0.001)功能连接较HC组增强。与HC组相比,BD-Ⅰ受试者的SMN-DAN间的FC值增加(0.247±0.073,-0.078±0.080,t=-2.974,P<0.01,FDR校正),在SMN-DMN间(-0.037±0.054,0.272±0.067,t=3.520,P<0.01,FDR校正)、SMN-rFPN间(-0.034±0.055,0.231±0.070,t=2.939,P<0.01,FDR校正)的FC值降低。BD-Ⅰ组SMN网络内FC增加值与BRMS得分呈正相关(r=0.220,P=0.040)。结论BD-Ⅰ患者感觉运动网络内及网络间功能连接异常,部分网络内FC值与躁狂症状呈正相关,这可能为BD-Ⅰ患者发病的部分神经机制。 展开更多
关键词 双相情感障碍 静息态功能磁共振成像 独立成分分析 静息态脑网络 感觉运动网络 功能连接
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部