真值发现作为整合由不同数据源提供的冲突信息的一种手段,在传统数据库领域已经得到了广泛的研究.然而现有的很多真值发现方法不适用于数据流应用,主要原因是它们都包含迭代的过程.针对一种特殊的数据流——感知数据流上的连续真值发现...真值发现作为整合由不同数据源提供的冲突信息的一种手段,在传统数据库领域已经得到了广泛的研究.然而现有的很多真值发现方法不适用于数据流应用,主要原因是它们都包含迭代的过程.针对一种特殊的数据流——感知数据流上的连续真值发现问题进行了研究.结合感知数据本身及其应用特点,提出一种变频评估数据源可信度的策略,减少了迭代过程的执行,提高了每一时刻多源感知数据流真值发现的效率.首先定义并研究了当感知数据流真值发现的相对误差和累积误差较小时,相邻时刻数据源的可信度变化需要满足的条件,进而给出了一种概率模型,以预测数据源的可信度满足该条件的概率.之后,通过整合上述结论,实现在预测的累积误差以一定概率不超过给定阈值的前提下,最大化数据源可信度的评估周期以提高效率,并将该问题转化为一个最优化问题.在此基础上,提出了一种变频评估数据源可信度的算法——CTF-Stream(continuous truth finding over sensor data streams),CTF-Stream结合历史数据动态地确定数据源可信度的评估时刻,在保证真值发现结果达到用户给定精度的同时提高了效率.最后,通过在真实的感知数据集合上进行实验,进一步验证了算法在处理感知数据流的真值发现问题时的效率和准确率.展开更多
目的在人体行为识别算法的研究领域,通过视频特征实现零样本识别的研究越来越多。但是,目前大部分研究是基于单模态数据展开的,关于多模态融合的研究还较少。为了研究多种模态数据对零样本人体动作识别的影响,本文提出了一种基于多模态...目的在人体行为识别算法的研究领域,通过视频特征实现零样本识别的研究越来越多。但是,目前大部分研究是基于单模态数据展开的,关于多模态融合的研究还较少。为了研究多种模态数据对零样本人体动作识别的影响,本文提出了一种基于多模态融合的零样本人体动作识别(zero-shot human action recognition framework based on multimodel fusion,ZSAR-MF)框架。方法本文框架主要由传感器特征提取模块、分类模块和视频特征提取模块组成。具体来说,传感器特征提取模块使用卷积神经网络(convolutional neural network,CNN)提取心率和加速度特征;分类模块利用所有概念(传感器特征、动作和对象名称)的词向量生成动作类别分类器;视频特征提取模块将每个动作的属性、对象分数和传感器特征映射到属性—特征空间中,最后使用分类模块生成的分类器对每个动作的属性和传感器特征进行评估。结果本文实验在Stanford-ECM数据集上展开,对比结果表明本文ZSAR-MF模型比基于单模态数据的零样本识别模型在识别准确率上提高了4%左右。结论本文所提出的基于多模态融合的零样本人体动作识别框架,有效地融合了传感器特征和视频特征,并显著提高了零样本人体动作识别的准确率。展开更多
文摘真值发现作为整合由不同数据源提供的冲突信息的一种手段,在传统数据库领域已经得到了广泛的研究.然而现有的很多真值发现方法不适用于数据流应用,主要原因是它们都包含迭代的过程.针对一种特殊的数据流——感知数据流上的连续真值发现问题进行了研究.结合感知数据本身及其应用特点,提出一种变频评估数据源可信度的策略,减少了迭代过程的执行,提高了每一时刻多源感知数据流真值发现的效率.首先定义并研究了当感知数据流真值发现的相对误差和累积误差较小时,相邻时刻数据源的可信度变化需要满足的条件,进而给出了一种概率模型,以预测数据源的可信度满足该条件的概率.之后,通过整合上述结论,实现在预测的累积误差以一定概率不超过给定阈值的前提下,最大化数据源可信度的评估周期以提高效率,并将该问题转化为一个最优化问题.在此基础上,提出了一种变频评估数据源可信度的算法——CTF-Stream(continuous truth finding over sensor data streams),CTF-Stream结合历史数据动态地确定数据源可信度的评估时刻,在保证真值发现结果达到用户给定精度的同时提高了效率.最后,通过在真实的感知数据集合上进行实验,进一步验证了算法在处理感知数据流的真值发现问题时的效率和准确率.
文摘目的在人体行为识别算法的研究领域,通过视频特征实现零样本识别的研究越来越多。但是,目前大部分研究是基于单模态数据展开的,关于多模态融合的研究还较少。为了研究多种模态数据对零样本人体动作识别的影响,本文提出了一种基于多模态融合的零样本人体动作识别(zero-shot human action recognition framework based on multimodel fusion,ZSAR-MF)框架。方法本文框架主要由传感器特征提取模块、分类模块和视频特征提取模块组成。具体来说,传感器特征提取模块使用卷积神经网络(convolutional neural network,CNN)提取心率和加速度特征;分类模块利用所有概念(传感器特征、动作和对象名称)的词向量生成动作类别分类器;视频特征提取模块将每个动作的属性、对象分数和传感器特征映射到属性—特征空间中,最后使用分类模块生成的分类器对每个动作的属性和传感器特征进行评估。结果本文实验在Stanford-ECM数据集上展开,对比结果表明本文ZSAR-MF模型比基于单模态数据的零样本识别模型在识别准确率上提高了4%左右。结论本文所提出的基于多模态融合的零样本人体动作识别框架,有效地融合了传感器特征和视频特征,并显著提高了零样本人体动作识别的准确率。