This paper proposes a hybrid method, called CNOP–4 DVar, for the identification of sensitive areas in targeted observations, which takes the advantages of both the conditional nonlinear optimal perturbation(CNOP) and...This paper proposes a hybrid method, called CNOP–4 DVar, for the identification of sensitive areas in targeted observations, which takes the advantages of both the conditional nonlinear optimal perturbation(CNOP) and four-dimensional variational assimilation(4 DVar) methods. The proposed CNOP–4 DVar method is capable of capturing the most sensitive initial perturbation(IP), which causes the greatest perturbation growth at the time of verification;it can also identify sensitive areas by evaluating their assimilation effects for eliminating the most sensitive IP. To alleviate the dependence of the CNOP–4 DVar method on the adjoint model, which is inherited from the adjoint-based approach, we utilized two adjointfree methods, NLS-CNOP and NLS-4 DVar, to solve the CNOP and 4 DVar sub-problems, respectively. A comprehensive performance evaluation for the proposed CNOP–4 DVar method and its comparison with the CNOP and CNOP–ensemble transform Kalman filter(ETKF) methods based on 10 000 observing system simulation experiments on the shallow-water equation model are also provided. The experimental results show that the proposed CNOP–4 DVar method performs better than the CNOP–ETKF method and substantially better than the CNOP method.展开更多
基金partially supported by the National Key R&D Program of China (Grant No. 2016YFA0600203)the National Natural Science Foundation of China (Grant No. 41575100)
文摘This paper proposes a hybrid method, called CNOP–4 DVar, for the identification of sensitive areas in targeted observations, which takes the advantages of both the conditional nonlinear optimal perturbation(CNOP) and four-dimensional variational assimilation(4 DVar) methods. The proposed CNOP–4 DVar method is capable of capturing the most sensitive initial perturbation(IP), which causes the greatest perturbation growth at the time of verification;it can also identify sensitive areas by evaluating their assimilation effects for eliminating the most sensitive IP. To alleviate the dependence of the CNOP–4 DVar method on the adjoint model, which is inherited from the adjoint-based approach, we utilized two adjointfree methods, NLS-CNOP and NLS-4 DVar, to solve the CNOP and 4 DVar sub-problems, respectively. A comprehensive performance evaluation for the proposed CNOP–4 DVar method and its comparison with the CNOP and CNOP–ensemble transform Kalman filter(ETKF) methods based on 10 000 observing system simulation experiments on the shallow-water equation model are also provided. The experimental results show that the proposed CNOP–4 DVar method performs better than the CNOP–ETKF method and substantially better than the CNOP method.