The grain growth behavior in reactive spray formed 7075+2.91 vol percent TiCAl alloy was studied and compared with that of spray formed 7075 Al alloy at semi-solid state. Theeffects of in-situ TiC particles on the mic...The grain growth behavior in reactive spray formed 7075+2.91 vol percent TiCAl alloy was studied and compared with that of spray formed 7075 Al alloy at semi-solid state. Theeffects of in-situ TiC particles on the microstructure of spray formed 7075 Al alloy were alsoinvestigated. The specimens were heat-treated isothermally at various temperatures between thesolidus and liquidus of 7075 Al alloy for times in the range of 10-60 min, then quenched in water.The microstructure of reheated specimens was characterized using scanning electron microscopy andoptical microscopy. The grain size was measured using a mean linear intercept method. Results showthat the in-situ TiC particles can effectively retard grain growth and refine the grain at a limitedsize. The grain growth exponent in Arrhenius equation increases from 2 to 3, which indicates thatthe in-situ TiC particles have the significant pinning effect on grain coarsening in the semi-solidstate.展开更多
To obtain new unconventional structures with specific mechanical and physical properties is possible not only by the development of new types of materials but also by treatment of conventional materials using unconven...To obtain new unconventional structures with specific mechanical and physical properties is possible not only by the development of new types of materials but also by treatment of conventional materials using unconventional innovative technological procedures.One of these technologies is the forming in semi-solid state involving rapid solidification of miniature components from steels.Production of such components is complicated by a number of technical problems.To explain phenomena of the process and structure development,the production of miniature components from the tool steel X210Cr12 difficult to form was experimentally tested.The structure of this originally ledeburite steel consisted of 95 % of metastable austenite after the treatment.Metastable austenite was located particularly in globular and polygonal grains while the remaining interspaces were filled by lamellar network.The detected high stability of extremely high fraction of metastable austenite was tested under different conditions of thermal exposition and mechanical loading.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No.50171010)
文摘The grain growth behavior in reactive spray formed 7075+2.91 vol percent TiCAl alloy was studied and compared with that of spray formed 7075 Al alloy at semi-solid state. Theeffects of in-situ TiC particles on the microstructure of spray formed 7075 Al alloy were alsoinvestigated. The specimens were heat-treated isothermally at various temperatures between thesolidus and liquidus of 7075 Al alloy for times in the range of 10-60 min, then quenched in water.The microstructure of reheated specimens was characterized using scanning electron microscopy andoptical microscopy. The grain size was measured using a mean linear intercept method. Results showthat the in-situ TiC particles can effectively retard grain growth and refine the grain at a limitedsize. The grain growth exponent in Arrhenius equation increases from 2 to 3, which indicates thatthe in-situ TiC particles have the significant pinning effect on grain coarsening in the semi-solidstate.
基金the project 1M06032 Research Centre of Forming TechnologySlovak and Czech Project SK-CZ-0180-09
文摘To obtain new unconventional structures with specific mechanical and physical properties is possible not only by the development of new types of materials but also by treatment of conventional materials using unconventional innovative technological procedures.One of these technologies is the forming in semi-solid state involving rapid solidification of miniature components from steels.Production of such components is complicated by a number of technical problems.To explain phenomena of the process and structure development,the production of miniature components from the tool steel X210Cr12 difficult to form was experimentally tested.The structure of this originally ledeburite steel consisted of 95 % of metastable austenite after the treatment.Metastable austenite was located particularly in globular and polygonal grains while the remaining interspaces were filled by lamellar network.The detected high stability of extremely high fraction of metastable austenite was tested under different conditions of thermal exposition and mechanical loading.