A new computation scheme proposed to tackle commensurate problems is devel- oped by modifying the semi-analytic approach for minimizing computational complexity. Using the proposed scheme, the limit state equations, u...A new computation scheme proposed to tackle commensurate problems is devel- oped by modifying the semi-analytic approach for minimizing computational complexity. Using the proposed scheme, the limit state equations, usually referred to as the failure surface, are obtained from transformation of an interval variable to a normalized one. In order to minimize the computational cost, two algorithms for optimizing the calculation steps have been proposed. The monotonicity of the objective function can be determined from narrowing the scope of interval variables in normalized infinite space by incorporating the algorithms into the computational scheme. Two examples are used to illustrate the operation and computational efficiency of the approach. The results of these examples show that the proposed algorithms can greatly reduce the computation complexity without sacrificing the computational accuracy. The advantage of the proposed scheme can be even more efficient for analyzing sophistic structures.展开更多
By combining a pair of linear springs we devise a nonlinear vibrator. For a one dimensional scenario the nonlinear force is composed of a polynomial of odd powers of position-dependent variable greater than or equal t...By combining a pair of linear springs we devise a nonlinear vibrator. For a one dimensional scenario the nonlinear force is composed of a polynomial of odd powers of position-dependent variable greater than or equal three. For a chosen initial condition without compromising the generality of the problem we analyze the problem considering only the leading cubic term. We solve the equation of motion analytically leading to The Jacobi Elliptic Function. To avoid the complexity of the latter, we propose a practical, intuitive-based and easy to use alternative semi-analytic method producing the same result. We demonstrate that our method is intuitive and practical vs. the plug-in Jacobi function. According to the proposed procedure, higher order terms such as quintic and beyond easily may be included in the analysis. We also extend the application of our method considering a system of a three-linear spring. Mathematica [1] is being used throughout the investigation and proven to be an indispensable computational tool.展开更多
Based on the motion differential equations of vibration and acoustic coupling system for a thin elastic spherical double-shell with several elastic plates attached to the shells, in which Dirac-δ functions are employ...Based on the motion differential equations of vibration and acoustic coupling system for a thin elastic spherical double-shell with several elastic plates attached to the shells, in which Dirac-δ functions are employed to introduce the forces and moments applied by the attachments, and by means of expanding field quantities as the Legendre series, a semi-analytic solution is derived for the solution to the vibration and acoustic radiation from a submerged spherical double-shell. This solution has a satisfying computational effectiveness and precision for arbitrary frequency range excitation. It is concluded that the internal plates attached to shells can change significantly the mechanical and acoustical characteristics of shells, and make the coupling system have a very rich resonance frequency spectrum. Moreover, the present method can be used to study the acoustic radiation mechanism of the type of structure.展开更多
Unemployment is one of the major vices in our contemporal society, which weigh greatly on the economy of such nation. It is also, a fact that knowing ones enemy before battle gives 50 per cent chance of victory;thus, ...Unemployment is one of the major vices in our contemporal society, which weigh greatly on the economy of such nation. It is also, a fact that knowing ones enemy before battle gives 50 per cent chance of victory;thus, this research aimed at providing understanding about dynamics of unemployment with consideration for retirement and possible control criterion. And the objectives are;formulation of mathematical model using the concept of deterministic model and mathematical epidemiology;then, model analysis. The model analysis includes, a numerical semi-analytical scheme for investigating validity of analytical solutions. The result of the analysis were that: 1) the model was mathematically well-pose and biologically meaningful 2) two equilibria points exist, and 3) a threshold for recruitment from the pool of unemployment, assuring victory in the fight against unemployment was also, obtained. The threshold is required to be well managed in order to win the battle against the socio-vice (unemployment) in the contemporary society. In addition, variational iterative method (VIM) is the numerical semi-analytic scheme employed to solve the model;thus, the approximate solution gave a practical meaningful interpretation supporting the analytical results and proof of verdict of assumptions of the model. The article concluded with three points;everyone has roles to play to curtail the socio-menace, beseech government and policy makers to look kindly, and create policy(ies) to sustain population growth, and the retiree should also, plan live after service, because over dependence on pension scheme could be died before death because of corruption in the scheme.展开更多
A parameter perturbation for the unsteady-state heat-transfer characteristics of honeycomb regenerator is presented. It is limited to the cases where the storage matrix has a small wall thickness so that no temperatur...A parameter perturbation for the unsteady-state heat-transfer characteristics of honeycomb regenerator is presented. It is limited to the cases where the storage matrix has a small wall thickness so that no temperature variation in the matrix perpendicular to the flow direction is considered. Starting from a two-phase transient thermal model for the gas and storage matrix, an approximate solution for regenerator heat transfer process is derived using the multiple-scale method for the limiting case where the longitudinal heat conduction of solid matrix is far less than the convective heat transfer between the gas and the solid. The regenerator temperature profiles are expressed as Taylor series of the coefficient of solid heat conduction item in the model. The analytical validity is shown by comparing the perturbation solution with the experiment and the numerical solution. The results show that it is possible for the perturbation to improve the effectiveness and economics of thermal research on regenerators.展开更多
Response of the air temperature over the land surface to the global vegetation distribution is investigated, using a three-dimensional governing equation to simulate the steady, large-scale, limited amplitude perturba...Response of the air temperature over the land surface to the global vegetation distribution is investigated, using a three-dimensional governing equation to simulate the steady, large-scale, limited amplitude perturbation of the free, inviscid and adiabatic atmosphere. The adoption of the static equation leads to a temperature governing equation in the terrain following coordinate. With the prescribed temperature as the upper boundary condition and the radiation balance as the lower boundary condition, the semi-analytical solution of the global circulation temperature can be calculated. In this article, only the air temperature (at 2 m height) over the land surface is analyzed, and the result suggests that this model can simulate the air temperature pattern over the land surface reasonably. A better simulation occurs when a simple feedback of the albedo on the temperature is included. Two sensitivity experiments are analyzed through this model. One suggests that the air temperature over the land surface descends obviously when the land surface is covered with ice all over, while another suggests that the air temperature rises a little when the land surface is covered with forest except the ice-covered area. This model appears to be a good tool to study the response of the air temperature to the vegetation distribution. Limitations of the model are also discussed.展开更多
In this paper, an effective numerical method for physically nonlinear interaction analysis is studied, in which the elasto-plastic problem of coupled analysis between the structure and medium may be transformed into s...In this paper, an effective numerical method for physically nonlinear interaction analysis is studied, in which the elasto-plastic problem of coupled analysis between the structure and medium may be transformed into several linear problems by means of the perturbation technique, then, the finite strip method and finite layer method are used to analyze the underground structure and rock medium, respectively, for their corresponding linear problems, so the purpose of simplifying the calculation can be achieved. This kind of method has made use of the twice semi-analytical technique: the perturbation and semi-analytic solution function to simplify 3-D nonlinear coupled problem into 1-D linear numerical one. In addition, this method is a new advance of semi-analytical method in the application to nonlinear problems by means of combinating with the analytical perturbation method, and it is also a branch of the perturbational numerical method developed in last years.展开更多
In this paper,a substructure method of three-dimensional semi-analytic boundary element is established.The seismic scattering by three-dimensional topography of a hill can be analyzed by the method in frequency domain...In this paper,a substructure method of three-dimensional semi-analytic boundary element is established.The seismic scattering by three-dimensional topography of a hill can be analyzed by the method in frequency domain.Using this method,the computational effort and storage space are reduced considerably.Finally,analytic results are given.展开更多
Usually, it is very difficult to find out an analytical solution to thermal conduction problems during high temperature welding. Therefore, as an important numerical approach, the method of lines (MOLs) is introduce...Usually, it is very difficult to find out an analytical solution to thermal conduction problems during high temperature welding. Therefore, as an important numerical approach, the method of lines (MOLs) is introduced to solve the temperature field characterized by high gradients. The basic idea of the method is to semi-discretize the governing equation of the problem into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method, by which the thermal boundary condition with high gradients are directly embodied in formulation. Thus the temperature field can be obtained by solving the ODEs. As a numerical example, the variation of an axisymmetrical temperature field along the plate thickness can be obtained.展开更多
SP3 (simplified P3) theory is widely used in LWR (light water reactor) analyses to partly capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this paper, a SP3 co...SP3 (simplified P3) theory is widely used in LWR (light water reactor) analyses to partly capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this paper, a SP3 code named STELLA is developed and verified at SNERDI (Shanghai Nuclear Engineering Research and Design Institute). For SP3 method, neutron transport equation can be transformed into two coupled equations in the same mathematical form as diffusion equation. In this work, SANM (semi-analytic nodal method) is used to solve diffusion-like equation, due to its easy to handle multi-group problem. Whole core nodal boundary net current coupling is used to improve convergence stability in SANM, instead of solving two-node problem. CMFD (coarse-mesh finite difference) acceleration method is employed for 0-th SP3 equation, which represents the neutron balance relationship. Three benchmarks are used to verify the SP3 code, STELLA. The first one is a self-defined one dimensional problem, which demonstrates SP3 method is extremely accurate, due to no academic approximation in one dimensional for SP3. The second one is a two dimensional one-group problem cited from Larsen's paper, which is usually used to verify and prove the SP3 code correct and accurate. And the third one is modified from 2D C5G7-MOX benchmark, whose numerical results indicate that STELLA is accurate and efficient in pin size level, compared to diffusion model.展开更多
In the existing literature, most studies investigated the free vibrations of a rotating pre-twisted cantilever beam;however, few considered the effect of the elastic-support boundary and the quantification of modal co...In the existing literature, most studies investigated the free vibrations of a rotating pre-twisted cantilever beam;however, few considered the effect of the elastic-support boundary and the quantification of modal coupling degree among different vibration directions. In addition, Coriolis, spin softening, and centrifugal stiffening effects are not fully included in the derived equations of motion of a rotating beam in most literature, especially the centrifugal stiffening effect in torsional direction. Considering these deficiencies, this study established a coupled flapwise–chordwise–axial–torsional dynamic model of a rotating double-tapered, pre-twisted, and inclined Timoshenko beam with elastic supports based on the semi-analytic method. Then, the proposed model was verified with experiments and ANSYS models using Beam188 and Shell181 elements. Finally, the effects of setting and pre-twisted angles on the degree of coupling among flapwise, chordwise, and torsional directions were quantified via modal strain energy ratios. Results showed that 1) the appearance of torsional vibration originates from the combined effect of flapwise–torsional and chordwise–torsional couplings dependent on the Coriolis effect, and that 2) the flapwise–chordwise coupling caused by the pure pre-twisted angle is stronger than that caused by the pure setting angle.展开更多
基金supported by the National Natural Science Foundation of China (No.10972084)
文摘A new computation scheme proposed to tackle commensurate problems is devel- oped by modifying the semi-analytic approach for minimizing computational complexity. Using the proposed scheme, the limit state equations, usually referred to as the failure surface, are obtained from transformation of an interval variable to a normalized one. In order to minimize the computational cost, two algorithms for optimizing the calculation steps have been proposed. The monotonicity of the objective function can be determined from narrowing the scope of interval variables in normalized infinite space by incorporating the algorithms into the computational scheme. Two examples are used to illustrate the operation and computational efficiency of the approach. The results of these examples show that the proposed algorithms can greatly reduce the computation complexity without sacrificing the computational accuracy. The advantage of the proposed scheme can be even more efficient for analyzing sophistic structures.
文摘By combining a pair of linear springs we devise a nonlinear vibrator. For a one dimensional scenario the nonlinear force is composed of a polynomial of odd powers of position-dependent variable greater than or equal three. For a chosen initial condition without compromising the generality of the problem we analyze the problem considering only the leading cubic term. We solve the equation of motion analytically leading to The Jacobi Elliptic Function. To avoid the complexity of the latter, we propose a practical, intuitive-based and easy to use alternative semi-analytic method producing the same result. We demonstrate that our method is intuitive and practical vs. the plug-in Jacobi function. According to the proposed procedure, higher order terms such as quintic and beyond easily may be included in the analysis. We also extend the application of our method considering a system of a three-linear spring. Mathematica [1] is being used throughout the investigation and proven to be an indispensable computational tool.
文摘Based on the motion differential equations of vibration and acoustic coupling system for a thin elastic spherical double-shell with several elastic plates attached to the shells, in which Dirac-δ functions are employed to introduce the forces and moments applied by the attachments, and by means of expanding field quantities as the Legendre series, a semi-analytic solution is derived for the solution to the vibration and acoustic radiation from a submerged spherical double-shell. This solution has a satisfying computational effectiveness and precision for arbitrary frequency range excitation. It is concluded that the internal plates attached to shells can change significantly the mechanical and acoustical characteristics of shells, and make the coupling system have a very rich resonance frequency spectrum. Moreover, the present method can be used to study the acoustic radiation mechanism of the type of structure.
文摘Unemployment is one of the major vices in our contemporal society, which weigh greatly on the economy of such nation. It is also, a fact that knowing ones enemy before battle gives 50 per cent chance of victory;thus, this research aimed at providing understanding about dynamics of unemployment with consideration for retirement and possible control criterion. And the objectives are;formulation of mathematical model using the concept of deterministic model and mathematical epidemiology;then, model analysis. The model analysis includes, a numerical semi-analytical scheme for investigating validity of analytical solutions. The result of the analysis were that: 1) the model was mathematically well-pose and biologically meaningful 2) two equilibria points exist, and 3) a threshold for recruitment from the pool of unemployment, assuring victory in the fight against unemployment was also, obtained. The threshold is required to be well managed in order to win the battle against the socio-vice (unemployment) in the contemporary society. In addition, variational iterative method (VIM) is the numerical semi-analytic scheme employed to solve the model;thus, the approximate solution gave a practical meaningful interpretation supporting the analytical results and proof of verdict of assumptions of the model. The article concluded with three points;everyone has roles to play to curtail the socio-menace, beseech government and policy makers to look kindly, and create policy(ies) to sustain population growth, and the retiree should also, plan live after service, because over dependence on pension scheme could be died before death because of corruption in the scheme.
基金Item Sponsored by High Technology Research Development Program of China(2005AA001020,2001AA514013)
文摘A parameter perturbation for the unsteady-state heat-transfer characteristics of honeycomb regenerator is presented. It is limited to the cases where the storage matrix has a small wall thickness so that no temperature variation in the matrix perpendicular to the flow direction is considered. Starting from a two-phase transient thermal model for the gas and storage matrix, an approximate solution for regenerator heat transfer process is derived using the multiple-scale method for the limiting case where the longitudinal heat conduction of solid matrix is far less than the convective heat transfer between the gas and the solid. The regenerator temperature profiles are expressed as Taylor series of the coefficient of solid heat conduction item in the model. The analytical validity is shown by comparing the perturbation solution with the experiment and the numerical solution. The results show that it is possible for the perturbation to improve the effectiveness and economics of thermal research on regenerators.
文摘Response of the air temperature over the land surface to the global vegetation distribution is investigated, using a three-dimensional governing equation to simulate the steady, large-scale, limited amplitude perturbation of the free, inviscid and adiabatic atmosphere. The adoption of the static equation leads to a temperature governing equation in the terrain following coordinate. With the prescribed temperature as the upper boundary condition and the radiation balance as the lower boundary condition, the semi-analytical solution of the global circulation temperature can be calculated. In this article, only the air temperature (at 2 m height) over the land surface is analyzed, and the result suggests that this model can simulate the air temperature pattern over the land surface reasonably. A better simulation occurs when a simple feedback of the albedo on the temperature is included. Two sensitivity experiments are analyzed through this model. One suggests that the air temperature over the land surface descends obviously when the land surface is covered with ice all over, while another suggests that the air temperature rises a little when the land surface is covered with forest except the ice-covered area. This model appears to be a good tool to study the response of the air temperature to the vegetation distribution. Limitations of the model are also discussed.
文摘In this paper, an effective numerical method for physically nonlinear interaction analysis is studied, in which the elasto-plastic problem of coupled analysis between the structure and medium may be transformed into several linear problems by means of the perturbation technique, then, the finite strip method and finite layer method are used to analyze the underground structure and rock medium, respectively, for their corresponding linear problems, so the purpose of simplifying the calculation can be achieved. This kind of method has made use of the twice semi-analytical technique: the perturbation and semi-analytic solution function to simplify 3-D nonlinear coupled problem into 1-D linear numerical one. In addition, this method is a new advance of semi-analytical method in the application to nonlinear problems by means of combinating with the analytical perturbation method, and it is also a branch of the perturbational numerical method developed in last years.
基金This project was sponsored by the Earthquake Science Foundation, China
文摘In this paper,a substructure method of three-dimensional semi-analytic boundary element is established.The seismic scattering by three-dimensional topography of a hill can be analyzed by the method in frequency domain.Using this method,the computational effort and storage space are reduced considerably.Finally,analytic results are given.
基金National Natural Science Foundation of China (50574097 90305023)
文摘Usually, it is very difficult to find out an analytical solution to thermal conduction problems during high temperature welding. Therefore, as an important numerical approach, the method of lines (MOLs) is introduced to solve the temperature field characterized by high gradients. The basic idea of the method is to semi-discretize the governing equation of the problem into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method, by which the thermal boundary condition with high gradients are directly embodied in formulation. Thus the temperature field can be obtained by solving the ODEs. As a numerical example, the variation of an axisymmetrical temperature field along the plate thickness can be obtained.
文摘SP3 (simplified P3) theory is widely used in LWR (light water reactor) analyses to partly capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this paper, a SP3 code named STELLA is developed and verified at SNERDI (Shanghai Nuclear Engineering Research and Design Institute). For SP3 method, neutron transport equation can be transformed into two coupled equations in the same mathematical form as diffusion equation. In this work, SANM (semi-analytic nodal method) is used to solve diffusion-like equation, due to its easy to handle multi-group problem. Whole core nodal boundary net current coupling is used to improve convergence stability in SANM, instead of solving two-node problem. CMFD (coarse-mesh finite difference) acceleration method is employed for 0-th SP3 equation, which represents the neutron balance relationship. Three benchmarks are used to verify the SP3 code, STELLA. The first one is a self-defined one dimensional problem, which demonstrates SP3 method is extremely accurate, due to no academic approximation in one dimensional for SP3. The second one is a two dimensional one-group problem cited from Larsen's paper, which is usually used to verify and prove the SP3 code correct and accurate. And the third one is modified from 2D C5G7-MOX benchmark, whose numerical results indicate that STELLA is accurate and efficient in pin size level, compared to diffusion model.
基金Supported by the National Natural Science Foundation(Grant Nos.11972112 and 11772089)the Fundamental Research Funds for the Central Universities(Grant Nos.N170308028,N170306004,N2003014,and N180708009)Liaoning Revitalization Talents Program(Grant No.XLYC1807008).
文摘In the existing literature, most studies investigated the free vibrations of a rotating pre-twisted cantilever beam;however, few considered the effect of the elastic-support boundary and the quantification of modal coupling degree among different vibration directions. In addition, Coriolis, spin softening, and centrifugal stiffening effects are not fully included in the derived equations of motion of a rotating beam in most literature, especially the centrifugal stiffening effect in torsional direction. Considering these deficiencies, this study established a coupled flapwise–chordwise–axial–torsional dynamic model of a rotating double-tapered, pre-twisted, and inclined Timoshenko beam with elastic supports based on the semi-analytic method. Then, the proposed model was verified with experiments and ANSYS models using Beam188 and Shell181 elements. Finally, the effects of setting and pre-twisted angles on the degree of coupling among flapwise, chordwise, and torsional directions were quantified via modal strain energy ratios. Results showed that 1) the appearance of torsional vibration originates from the combined effect of flapwise–torsional and chordwise–torsional couplings dependent on the Coriolis effect, and that 2) the flapwise–chordwise coupling caused by the pure pre-twisted angle is stronger than that caused by the pure setting angle.