从遥感图像中自动化地检测和提取建筑物在城市规划、人口估计、地形图制作和更新等应用中具有极为重要的意义。本文提出和展示了建筑物提取的数个研究进展。由于遥感成像机理、建筑物自身、背景环境的复杂性,传统的经验设计特征的方法...从遥感图像中自动化地检测和提取建筑物在城市规划、人口估计、地形图制作和更新等应用中具有极为重要的意义。本文提出和展示了建筑物提取的数个研究进展。由于遥感成像机理、建筑物自身、背景环境的复杂性,传统的经验设计特征的方法一直未能实现自动化,建筑物提取成为30余年尚未解决的挑战。先进的深度学习方法带来新的机遇,但目前存在两个困境:①尚缺少高精度的建筑物数据库,而数据是深度学习必不可少的"燃料";②目前国际上的方法都采用像素级的语义分割,目标级、矢量级的提取工作亟待开展。针对于此,本文进行以下工作:①与目前同类数据集相比,建立了一套目前国际上范围最大、精度最高、涵盖多种样本形式(栅格、矢量)、多类数据源(航空、卫星)的建筑物数据库(WHU building dataset),并实现开源;②提出一种基于全卷积网络的建筑物语义分割方法,与当前国际上的最新算法相比达到了领先水平;③将建筑物提取的范围从像素级的语义分割推广至目标实例分割,实现以目标(建筑物)为对象的识别和提取。通过试验,验证了WHU数据库在国际上的领先性和本文方法的先进性。展开更多
Transformers have recently lead to encouraging progress in computer vision.In this work,we present new baselines by improving the original Pyramid Vision Transformer(PVT v1)by adding three designs:(i)a linear complexi...Transformers have recently lead to encouraging progress in computer vision.In this work,we present new baselines by improving the original Pyramid Vision Transformer(PVT v1)by adding three designs:(i)a linear complexity attention layer,(ii)an overlapping patch embedding,and(iii)a convolutional feed-forward network.With these modifications,PVT v2 reduces the computational complexity of PVT v1 to linearity and provides significant improvements on fundamental vision tasks such as classification,detection,and segmentation.In particular,PVT v2 achieves comparable or better performance than recent work such as the Swin transformer.We hope this work will facilitate state-ofthe-art transformer research in computer vision.Code is available at https://github.com/whai362/PVT.展开更多
The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning technique...The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories, such as bird species or dog breeds. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we review four types of deep learning based fine-grained image classification approaches, including the general convolutional neural networks (CNNs), part detection based, ensemble of networks based and visual attention based fine-grained image classification approaches. Besides, the deep learning based semantic segmentation approaches are also covered in this paper. The region proposal based and fully convolutional networks based approaches for semantic segmentation are introduced respectively.展开更多
文摘从遥感图像中自动化地检测和提取建筑物在城市规划、人口估计、地形图制作和更新等应用中具有极为重要的意义。本文提出和展示了建筑物提取的数个研究进展。由于遥感成像机理、建筑物自身、背景环境的复杂性,传统的经验设计特征的方法一直未能实现自动化,建筑物提取成为30余年尚未解决的挑战。先进的深度学习方法带来新的机遇,但目前存在两个困境:①尚缺少高精度的建筑物数据库,而数据是深度学习必不可少的"燃料";②目前国际上的方法都采用像素级的语义分割,目标级、矢量级的提取工作亟待开展。针对于此,本文进行以下工作:①与目前同类数据集相比,建立了一套目前国际上范围最大、精度最高、涵盖多种样本形式(栅格、矢量)、多类数据源(航空、卫星)的建筑物数据库(WHU building dataset),并实现开源;②提出一种基于全卷积网络的建筑物语义分割方法,与当前国际上的最新算法相比达到了领先水平;③将建筑物提取的范围从像素级的语义分割推广至目标实例分割,实现以目标(建筑物)为对象的识别和提取。通过试验,验证了WHU数据库在国际上的领先性和本文方法的先进性。
基金National Natural Science Foundation of China under Grant Nos.61672273 and 61832008Science Foundation for Distinguished Young Scholars of Jiangsu under Grant No.BK20160021+1 种基金Postdoctoral Innovative Talent Support Program of China under Grant Nos.BX20200168,2020M681608General Research Fund of Hong Kong under Grant No.27208720。
文摘Transformers have recently lead to encouraging progress in computer vision.In this work,we present new baselines by improving the original Pyramid Vision Transformer(PVT v1)by adding three designs:(i)a linear complexity attention layer,(ii)an overlapping patch embedding,and(iii)a convolutional feed-forward network.With these modifications,PVT v2 reduces the computational complexity of PVT v1 to linearity and provides significant improvements on fundamental vision tasks such as classification,detection,and segmentation.In particular,PVT v2 achieves comparable or better performance than recent work such as the Swin transformer.We hope this work will facilitate state-ofthe-art transformer research in computer vision.Code is available at https://github.com/whai362/PVT.
基金supported by the National Natural Science Foundation of China(Nos.61373121 and 61328205)Program for Sichuan Provincial Science Fund for Distinguished Young Scholars(No.13QNJJ0149)+1 种基金the Fundamental Research Funds for the Central UniversitiesChina Scholarship Council(No.201507000032)
文摘The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories, such as bird species or dog breeds. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we review four types of deep learning based fine-grained image classification approaches, including the general convolutional neural networks (CNNs), part detection based, ensemble of networks based and visual attention based fine-grained image classification approaches. Besides, the deep learning based semantic segmentation approaches are also covered in this paper. The region proposal based and fully convolutional networks based approaches for semantic segmentation are introduced respectively.