The explosive gases CO and C2H4, released mainly flammable gases during the process of coal self-ignition, are of the most important ingredients of the multi-component gases in goal areas, along with CH4. We have dete...The explosive gases CO and C2H4, released mainly flammable gases during the process of coal self-ignition, are of the most important ingredients of the multi-component gases in goal areas, along with CH4. We have determined some of the parame- ters of explosive properties of the one-component gases CH4, CO and C2H4 using an explosive trial device of polybasic explosive gas mixtures and emphasized particularly the effect on the limits of explosive concentration of the binary explosive mixed gases CH4+CO, CH4+C2H4, as a function of the amount of CO, C2H4 and inert flame resisting gases (N2, CO2). The experimental results show that the effect of inert gases on the explosive limits of mixed gases, given the property of explosive gas, is obvious: the inert gases (N2, CO2) possess some inhibitory effects on the explosion of the multi-component explosive gas mixtures. The results will provide some experimental support to suppress the occurrence of the gas explosions in goaf areas and provide some directions for designing explosion-proof electric equipment and fire arresters.展开更多
Hydrogen and ammonia have attracted increasing attention as carbon-free fuels.Ammonia is considered to be an effective energy storage and hydrogen storage medium.However,a small amount of unremoved NH3 is still presen...Hydrogen and ammonia have attracted increasing attention as carbon-free fuels.Ammonia is considered to be an effective energy storage and hydrogen storage medium.However,a small amount of unremoved NH3 is still present in the product during the decomposition of ammonia to produce hydrogen.Therefore,it is very essential to investigate the self-ignition of hydrogen-ammonia mixtures in order to accommodate the various scenarios of hydrogen energy applications.In this paper,the effect of NH3 addition on the self-ignition of high-pressure hydrogen release is numerically investigated.The RNG k-εturbulence model,EDC combustion model,and 213-step detailed NH_(3)/H_(2) combustion mechanism are used.CHEMKIN-Pro programs for zero-dimensional homogeneous and constant volume adiabatic reactor models are used for sensitivity analysis and ignition delay time of the chemical reaction mechanism.The results showed that the minimum burst pressure required for self-ignition increased significantly after the addition of ammonia.The maximum temperature and shock wave intensity inside the tube decreases with increasing ammonia concentration.The ignition delay time and H,HO2,and OH radicals reduce with increasing ammonia concentration.H and HO2 radicals are suggested as indicators for tracking the second and third flame branches,respectively.展开更多
The solid-fueled Scramjet is an interesting option for supersonic combustion ramjet.It shows significant advantages such as simple fuel supply and compactness,avoiding the complex system of tanks and pipelines that en...The solid-fueled Scramjet is an interesting option for supersonic combustion ramjet.It shows significant advantages such as simple fuel supply and compactness,avoiding the complex system of tanks and pipelines that encountered in liquid-fueled Scramjets.The solid-fueled Scramjet could be the simplest air-breathing engine for the hypersonic flight regime.This paper presents a comprehensive and systematic review of the research progress on solid-fueled Scramjet in various institutes and universities.It summarizes a progress overview of three types of the solid-fueled Scramjet,which covers a wealth of landmark numerical and experimental results.Based on this,several relevant key technologies are proposed.Several inherent scientific issues are refined,such as the mixing mechanism of multi-phase flow and supersonic airflow,ignition and combustion mechanism of the condensed phase in a supersonic airflow,and coupling mechanism of gas and solid phase in a supersonic flow.Finally,the historical development trend is clarified,and some recommendations are provided for future solid-fueled Scramjet.展开更多
基金The financial supports from the National Natural Science Foundation of China (No.50874088)the Changjiang Scholars and Innovative Research Team in University (No.IRT0856)
文摘The explosive gases CO and C2H4, released mainly flammable gases during the process of coal self-ignition, are of the most important ingredients of the multi-component gases in goal areas, along with CH4. We have determined some of the parame- ters of explosive properties of the one-component gases CH4, CO and C2H4 using an explosive trial device of polybasic explosive gas mixtures and emphasized particularly the effect on the limits of explosive concentration of the binary explosive mixed gases CH4+CO, CH4+C2H4, as a function of the amount of CO, C2H4 and inert flame resisting gases (N2, CO2). The experimental results show that the effect of inert gases on the explosive limits of mixed gases, given the property of explosive gas, is obvious: the inert gases (N2, CO2) possess some inhibitory effects on the explosion of the multi-component explosive gas mixtures. The results will provide some experimental support to suppress the occurrence of the gas explosions in goaf areas and provide some directions for designing explosion-proof electric equipment and fire arresters.
基金supported by the National Key R&D Program of China for Renewable Energy and Hydrogen Technology(Grant No.2021YFB4000403)the National Natural Science Foundation of China(Grant No.52204072)+3 种基金the National Natural Science Foundation of China(Grant No.22038002)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.22221005)the Fujian Science and Technology Major Project(Grant No.2020HZ07009)the Natural Science Foundation of Fujian Province(Grant No.2020J05098).
文摘Hydrogen and ammonia have attracted increasing attention as carbon-free fuels.Ammonia is considered to be an effective energy storage and hydrogen storage medium.However,a small amount of unremoved NH3 is still present in the product during the decomposition of ammonia to produce hydrogen.Therefore,it is very essential to investigate the self-ignition of hydrogen-ammonia mixtures in order to accommodate the various scenarios of hydrogen energy applications.In this paper,the effect of NH3 addition on the self-ignition of high-pressure hydrogen release is numerically investigated.The RNG k-εturbulence model,EDC combustion model,and 213-step detailed NH_(3)/H_(2) combustion mechanism are used.CHEMKIN-Pro programs for zero-dimensional homogeneous and constant volume adiabatic reactor models are used for sensitivity analysis and ignition delay time of the chemical reaction mechanism.The results showed that the minimum burst pressure required for self-ignition increased significantly after the addition of ammonia.The maximum temperature and shock wave intensity inside the tube decreases with increasing ammonia concentration.The ignition delay time and H,HO2,and OH radicals reduce with increasing ammonia concentration.H and HO2 radicals are suggested as indicators for tracking the second and third flame branches,respectively.
基金supported by the China Scholarship Council and the National Natural Science Foundation of China(Nos.2020JJ4665,51706241).
文摘The solid-fueled Scramjet is an interesting option for supersonic combustion ramjet.It shows significant advantages such as simple fuel supply and compactness,avoiding the complex system of tanks and pipelines that encountered in liquid-fueled Scramjets.The solid-fueled Scramjet could be the simplest air-breathing engine for the hypersonic flight regime.This paper presents a comprehensive and systematic review of the research progress on solid-fueled Scramjet in various institutes and universities.It summarizes a progress overview of three types of the solid-fueled Scramjet,which covers a wealth of landmark numerical and experimental results.Based on this,several relevant key technologies are proposed.Several inherent scientific issues are refined,such as the mixing mechanism of multi-phase flow and supersonic airflow,ignition and combustion mechanism of the condensed phase in a supersonic airflow,and coupling mechanism of gas and solid phase in a supersonic flow.Finally,the historical development trend is clarified,and some recommendations are provided for future solid-fueled Scramjet.