Identification and classification of different seismo-tectonic events with similar character- istics in a region of interest is one of the most important subjects in seismic hazard studies. In this study, linear and n...Identification and classification of different seismo-tectonic events with similar character- istics in a region of interest is one of the most important subjects in seismic hazard studies. In this study, linear and nonlinear discriminant analyses have been applied to classify seismic events in the vicinity of Istanbul. The vertical components of the digital velocity seismograms are used for seismic events with magnitude (Md) between 1.8 and 3.0 that occurred between 2001 and 2004. Two, time dependent pa- rameters, complexity and S/P peak amplitude ratio are selected as predictands. Linear, quadratic, diag- linear and diagquadratic discriminant functions are investigated. Accuracy of methods with an addi- tional adjusted quadratic models are 96.6%, 96.6%, 95.5%, 96.6%, and 97.6%, respectively with a vari- ous misclassified rate for each class. The performances of models are justified with cross validation and resubstitution error. Although all models remarkably well performed, adjusted quadratic function achieved the best success rate with just 4 misclassified events out of 179, even better compared to com- plex methods such as, self organizing method, k-means, Gaussion mixture models that applied to same dataset in literature.展开更多
In this paper we applied the technique of Self Organizing Map (SOM) to segment individuals based on their credit information. SOM is an unsupervised machine learning method that reduces data complexity and dimensional...In this paper we applied the technique of Self Organizing Map (SOM) to segment individuals based on their credit information. SOM is an unsupervised machine learning method that reduces data complexity and dimensionality while keeping sits original topology, which is superior to other dimension reduction methods especially when features in data have unclear nonlinear relations. Through this method we provide more clear and intuitive segmentation that other traditional methods cannot achieve.展开更多
文摘Identification and classification of different seismo-tectonic events with similar character- istics in a region of interest is one of the most important subjects in seismic hazard studies. In this study, linear and nonlinear discriminant analyses have been applied to classify seismic events in the vicinity of Istanbul. The vertical components of the digital velocity seismograms are used for seismic events with magnitude (Md) between 1.8 and 3.0 that occurred between 2001 and 2004. Two, time dependent pa- rameters, complexity and S/P peak amplitude ratio are selected as predictands. Linear, quadratic, diag- linear and diagquadratic discriminant functions are investigated. Accuracy of methods with an addi- tional adjusted quadratic models are 96.6%, 96.6%, 95.5%, 96.6%, and 97.6%, respectively with a vari- ous misclassified rate for each class. The performances of models are justified with cross validation and resubstitution error. Although all models remarkably well performed, adjusted quadratic function achieved the best success rate with just 4 misclassified events out of 179, even better compared to com- plex methods such as, self organizing method, k-means, Gaussion mixture models that applied to same dataset in literature.
文摘In this paper we applied the technique of Self Organizing Map (SOM) to segment individuals based on their credit information. SOM is an unsupervised machine learning method that reduces data complexity and dimensionality while keeping sits original topology, which is superior to other dimension reduction methods especially when features in data have unclear nonlinear relations. Through this method we provide more clear and intuitive segmentation that other traditional methods cannot achieve.