The development of efficient, low-cost, for water splitting, particularly those stable, non-noble-metal electrocatalysts that can catalyze both the hydrogen evolution reaction (HER) at the cathode and oxygen evoluti...The development of efficient, low-cost, for water splitting, particularly those stable, non-noble-metal electrocatalysts that can catalyze both the hydrogen evolution reaction (HER) at the cathode and oxygen evolution reaction (OER) at the anode, is a challenge. We have developed a facile method for synthesizing CoSe2 nanoparticles uniformly anchored on carbon fiber paper (CoSe2/CF) via pyrolysis and selenization of in situ grown zeolitic imidazolate framework-67 (ZIF-67). CoSe2/CF shows high and stable catalytic activity in both the HER and OER in alkaline solution. At a low cell potential, i.e., 1.63 V, a water electrolyzer equipped with two CoSe2/CF electrodes gave a water-splitting current of 10 mA.cm-2. At a current of 20 mA-cm-2, it can operate without degradation for 30 h. This study not only offers a cost-effective solution for water splitting but also provides a new strategy for developing various catalytic nanostructures by changing the metal-organic framework precursors.展开更多
Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power.Moreover,the thermoelectric properties of traditional inorganic and organic mater...Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power.Moreover,the thermoelectric properties of traditional inorganic and organic materials have been significantly improved over the past few decades.Among these compounds,layered two-dimensional(2D)materials,such as graphene,black phosphorus,transition metal dichalcogenides,IVA–VIA compounds,and MXenes,have generated a large research attention as a group of potentially high-performance thermoelectric materials.Due to their unique electronic,mechanical,thermal,and optoelectronic properties,thermoelectric devices based on such materials can be applied in a variety of applications.Herein,a comprehensive review on the development of 2D materials for thermoelectric applications,as well as theoretical simulations and experimental preparation,is presented.In addition,nanodevice and new applications of 2D thermoelectric materials are also introduced.At last,current challenges are discussed and several prospects in this field are proposed.展开更多
The development of wearable multifunctional electromagnetic protective fabrics with multifunctional,low cost,and high efficiency remains a challenge.Here,inspired by the unique flower branch shape of“Thunberg’s mead...The development of wearable multifunctional electromagnetic protective fabrics with multifunctional,low cost,and high efficiency remains a challenge.Here,inspired by the unique flower branch shape of“Thunberg’s meadowsweet”in nature,a nanofibrous composite membrane with hierarchical structure was constructed.Integrating sophisticated 0D@2D@1D hierarchical structures with multiple heterointerfaces can fully unleash the multifunctional application potential of composite membrane.The targeted induction method was used to precisely regulate the formation site and morphology of the metal–organic framework precursor,and intelligently integrate multiple heterostructures to enhance dielectric polarization,which improves the impedance matching and loss mechanisms of the electromagnetic wave absorbing materials.Due to the synergistic enhancement of electrospinning-derived carbon nanofiber“stems”,MOF-derived carbon nanosheet“petals”and transition metal selenide nano-particle“stamens”,the CoxSey/NiSe@CNSs@CNFs(CNCC)composite membrane obtains a minimum reflection loss value(RL_(min))of-68.40 dB at 2.6 mm and a maximum effective absorption bandwidth(EAB)of 8.88 GHz at a thin thickness of 2.0 mm with a filling amount of only 5 wt%.In addition,the multi-component and hierarchical heterostructure endow the fibrous membrane with excellent flexibility,water resistance,thermal management,and other multifunctional properties.This work provides unique perspectives for the precise design and rational application of multifunctional fabrics.展开更多
A suspension of fine selenium (Se) powder (100 or 200 mesh) in octadecene (Se-SUS) has proven to be a high-performance, versatile, convenient, reproducible, yet green Se precursor. The advantages of Se-SUS arise...A suspension of fine selenium (Se) powder (100 or 200 mesh) in octadecene (Se-SUS) has proven to be a high-performance, versatile, convenient, reproducible, yet green Se precursor. The advantages of Se-SUS arise from its highly reactive chemical nature and flexibility. These two features made it possible to carry out the synthesis of high quality metal selenide nanocrystals with diverse compositions and structures, including binary, core/shelL transition metal doped, and complex composition nanocrystals. These successes further demonstrated that Se-SUS is a powerful Se precursor for solving a few long- standing challenges in the synthesis of high quality selenide nanocrystals. For instance, Se-SUS was successfully employed as a Se precursor for shell growth in high quality core/shell nanocrystals to replace expensive and highly toxic precursors, such as Se-phosphine and bis-trimethylsilyl selenide, with greatly lowered epitaxial temperatures (as low as 150℃) to avoid alloying. As another example, Se-SUS enabled "co-nucleation doping" as a means of preparing high quality Mn doped ZnSe nanocrystals with pure, stable, and highly efficient dopant fluorescence.展开更多
High pure tellurium was prepared from raw tellurium containing copper and selenium by chemical method containing oxidation with concentrated nitric acid, leaching with hydrochloric acid, reducing with sulfur dioxide a...High pure tellurium was prepared from raw tellurium containing copper and selenium by chemical method containing oxidation with concentrated nitric acid, leaching with hydrochloric acid, reducing with sulfur dioxide and treating in hydrogen atmosphere at high temperature. Removal ratio of Cu in raw tellurium reaches 99% after raw tellurium is oxidized and leached with HNO3(69%) under the following conditions: 0.96 times stoichiometric quantity of concentrated nitric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Leaching ratio of Te reaches 99% after Te is leached with hydrochloric acid under the following conditions: 1.67 times stoichiometric quantity of hydrochloric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Tellurium powder(99.95%) is obtained when Te(IV) in leachate is reduced with sulfur dioxide. The purity of tellurium increases from 99.954% to 99.999 6% after tellurium(99.95%) is treated in hydrogen atmosphere at 723.15 K for 30 min.展开更多
Bismuth selenide(Bi_(2)Se_(3))is an attractive visible-light-responsive semiconductor that can absorb a full range of visible and near-infrared light.However,its poor redox capacity and rapid carrier recombination lim...Bismuth selenide(Bi_(2)Se_(3))is an attractive visible-light-responsive semiconductor that can absorb a full range of visible and near-infrared light.However,its poor redox capacity and rapid carrier recombination limit its application in photocatalytic oxidation.In this study,we adopted Bi_(2)Se_(3)as the couple part of graphitic carbon nitride(g-C_(3)N_(4))to construct a Bi_(2)Se_(3)/g-C_(3)N_(4)composite photocatalyst.Through in situ fabrication,the self-developed Bi2O3/g-C_(3)N_(4)precursor was transformed into a Bi_(2)Se_(3)/g-C_(3)N_(4)heterojunction.The as-prepared Bi_(2)Se_(3)/g-C_(3)N_(4)composite exhibited much higher visible-light-driven photocatalytic activity than pristine Bi_(2)Se_(3)and g-C_(3)N_(4)in the removal of phenol.The enhanced photocatalytic activity was ascribed to the S-scheme configuration of Bi_(2)Se_(3)/g-C_(3)N_(4);this was confirmed by the energy-level shift,photoluminescence analysis,computational structure study,and reactive-radical testing.In the S-scheme heterojunction,photo-excited electrons in the conduction band of g-C_(3)N_(4)migrate to the valence band of Bi_(2)Se_(3)and combine with the excited holes therein.By consuming less reactive carriers,the S-scheme heterojunction can not only effectively promote charge separation,but also preserve more reactive photo-generated carriers.This property enhances the photocatalytic activity.展开更多
With good electrical properties and an inherently complex crystal structure, Cu2-xSe is a potential "phonon glass electron crystal" thermoelectric material that has previously not attracted much interest. In this st...With good electrical properties and an inherently complex crystal structure, Cu2-xSe is a potential "phonon glass electron crystal" thermoelectric material that has previously not attracted much interest. In this study, Cu2-xSe (0 ≤ x ≤0.25) compounds were synthesized by a melting-quenching method, and then sintered by spark plasma sintering to obtain bulk material. The effect of Cu content on the phase transition and thermoelectric properties of Cu2-xSe were investigated in the temperature range of 300 K-750 K. The results of X-ray diffraction at room temperature show that Cu2-xSe compounds possess a cubic structure with a space group of Fm3m (#225) when 0.15 〈 x ≤ 0.25, whereas they adopt a composite of monoclinic and cubic phases when 0 ≤x ≤ 0.15. The thermoelectric property measurements show that with increasing Cu content, the electrical conductivity decreases, the Seebeck coefficient increases and the thermal conductivity decreases. Due to the relatively good power factor and low thermal conductivity, the nearly stoichiometric Cu2Se compound achieves the highest ZT of 0.38 at 750 K. It is expected that the thermoelectric performance can be further optimized by doping appropriate elements and/or via a nanostructuring approach.展开更多
Two-dimensional Ti_(3)C_(2)T_(x) exhibits outstanding rate property and cycle performance in lithium-ion capacitors(LICs)due to its unique layered structure,excellent electronic conductivity,and high specific surface ...Two-dimensional Ti_(3)C_(2)T_(x) exhibits outstanding rate property and cycle performance in lithium-ion capacitors(LICs)due to its unique layered structure,excellent electronic conductivity,and high specific surface area.However,like graphene,Ti_(3)C_(2)T_(x) restacks during electrochemical cycling due to hydrogen bonding or van der Waals forces,leading to a decrease in the specific surface area and an increase in the diffusion distance of electrolyte ions between the interlayer of the material.Here,a transition metal selenide MoSe_(2) with a special three-stacked atomic layered structure,derived from metal-organic framework(MOF),is introduced into the Ti_(3)C_(2)T_(x) structure through a solvo-thermal method.The synergic effects of rapid Li+diffusion and pillaring effect from the MoSe_(2) and excellent conductivity from the Ti_(3)C_(2)T_(x) sheets endow the material with excellent electrochemical reaction kinetics and capacity.The composite Ti_(3)C_(2)T_(x)@MoSe_(2) material exhibits a high capacity over 300 mAh·g^(-1) at 150 mA·g^(-1) and excellent rate property with a specific capacity of 150 mAh·g^(-1) at 1500 mA·g^(-1).Addition-ally,the material shows a superior capacitive contribution of 86.0%at 2.0 mV·s^(-1) due to the fast electrochemical reactions.A Ti_(3)C_(2)T_(x)@MoSe_(2)//AC LIC device is also fabricated and exhibits stable cycle performance.展开更多
Hierarchical nano-architectures comprised of ultrathin ternary selenide (CoNiSe2) nanorods were directly grown on nickel foam (NF). The integrated CoNiSe2/NF functions as a robust electrocatalyst with an extremely...Hierarchical nano-architectures comprised of ultrathin ternary selenide (CoNiSe2) nanorods were directly grown on nickel foam (NF). The integrated CoNiSe2/NF functions as a robust electrocatalyst with an extremely high activity and stability for emerging renewable energy technologies, and electrochemical oxygen and hydrogen evolution reactions (OER and HER, respectively). The overpotentials required to deliver a current density of 100 mA·cm^-2 are as low as 307 and 170 mV for the OER and HER, respectively; therefore, the obtained CoNiSe2 is among the most promising earth-abundant catalysts for water splitting. Furthermore, our synthetic sample validates a two-electrode electrolyzer for reducing the cell voltage in the full water splitting reaction to 1.591 V to achieve a current density of 10 mA·cm^-2, which offers a novel inexpensive, integrated selenide/NF electrode for electrocatalytic applications.展开更多
Hollow NiCoSe_(x)(H-NiCoSe_(x)) nanospheres encapsulated with carbon shell were prepared via one-step easy solvothermal method followed by the carbon coating process.H-NiCoSe_(x)@C has large interior void with the uni...Hollow NiCoSe_(x)(H-NiCoSe_(x)) nanospheres encapsulated with carbon shell were prepared via one-step easy solvothermal method followed by the carbon coating process.H-NiCoSe_(x)@C has large interior void with the uniform dimension around 350 nm and the thickness of carbon shell around 20-30 nm.Coupling with the large interior void as well as robust protective carbon shell,H-NiCoSe_(x)@C can retain the reversible capacity of 805.6 mAh·g^(-1) after 100 cycles at 200 mA·g^(-1).In particular,H-NiCoSe_(x)@C delivers large reversible capacity of 1532.2 mAh·g^(-1) upon cycling for 1000 loops at 1000 mA·g^(-1)with the capacity retention as high as 128.2% upon long period of activation.Even at the high rate of 3000 mA·g^(-1),its specific capacity still retains up to 659.3 mAh·g^(-1).The superior lithium storage performances for H-NiCoSe_(x)@C profit from its robust hollow core-shell structure as well as enhanced electrical conductivity and ion transport.展开更多
Two-dimensional(2D)MXenes are promising as electrode materials for energy storage,owing to their high electronic conductivity and low diffusion barrier.Unfortunately,similar to most 2D materials,MXene nanosheets easil...Two-dimensional(2D)MXenes are promising as electrode materials for energy storage,owing to their high electronic conductivity and low diffusion barrier.Unfortunately,similar to most 2D materials,MXene nanosheets easily restack during the electrode preparation,which degrades the electrochemical performance of MXene-based materials.A novel synthetic strategy is proposed for converting MXene into restacking-inhibited three-dimensional(3D)balls coated with iron selenides and carbon.This strategy involves the preparation of Fe_(2)O_(3)@carbon/MXene microspheres via a facile ultrasonic spray pyrolysis and subsequent selenization process.Such 3D structuring effectively prevents interlayer restacking,increases the surface area,and accelerates ion transport,while maintaining the attractive properties of MXene.Furthermore,combining iron selenides and carbon with 3D MXene balls offers many more sites for ion storage and enhances the structural robustness of the composite balls.The resultant 3D structured microspheres exhibit a high reversible capacity of 410 mAh g^(−1) after 200 cycles at 0.1 A g^(−1) in potassium-ion batteries,corresponding to the capacity retention of 97% as calculated based on 100 cycles.Even at a high current density of 5.0 A g^(−1),the composite exhibits a discharge capacity of 169 mAh g^(−1).展开更多
The development of efficient and stable non-noble metal-based electrocatalysts for the oxygen evolution reaction (OER) is one of the essential challenges for the upcoming hydrogen economy. Herein, three-dimensional ...The development of efficient and stable non-noble metal-based electrocatalysts for the oxygen evolution reaction (OER) is one of the essential challenges for the upcoming hydrogen economy. Herein, three-dimensional (3D) mesoporous nickel iron selenide with rose-like microsphere architecture was directly grown on Ni foam via a successive two-step hydrotherrnal method. The unique 3D mesoporous rose-like morphology leads to a higher number of active sites as well as fast mass and electron transport through the entire electrode, and facilitates the release of 02 bubbles formed during the OER catalysis. As a result, the synthesized Ni0.76Fe0.24Se exhibits superior OER performances, with an ultralow overpotential of 197 mV needed to produce a current density of 10 mA.cm-2 in 1 M KOH, outperforming all transition metal selenide OER catalysts reported to date.展开更多
Demand of highly efficient earth-abundant transition metal-based electrocatalysts to replace noble metal materials for boosting oxygen evolution reaction(OER)is rapidly growing.Herein,an electrochemically exfoliated g...Demand of highly efficient earth-abundant transition metal-based electrocatalysts to replace noble metal materials for boosting oxygen evolution reaction(OER)is rapidly growing.Herein,an electrochemically exfoliated graphite(EG)foil supported bimetallic selenide encased in N-doped carbon(EG/(Co,Ni)Se2-NC)hybrid is developed and synthesized by a vapor-phase hydrothermal strategy and subsequent selenization process.The as-prepared EG/(Co,Ni)Se2-NC hybrid exhibits a core-shell structure where the particle diameter of(Co,Ni)Se2 core is about 70 nm and the thickness of N-doped carbon shell is approximately 5 nm.Benefitting from the synergistic effects between the combination of highly active Co species and improved electron transfer from Ni species,and N-doped carbon,the EG/(Co,Ni)Se2-NC hybrid shows remarkable electrocatalytic activity toward OER with a comparatively low overpotential of 258 mV at an current density of 10 mA cm?2 and a small Tafel slope of 73.3 mV dec?1.The excellent OER catalysis performance of EG/(Co,Ni)Se2-NC hybrid is much better than that of commercial Ir/C(343 mV at 10 mA cm?2 and 98.1 mV dec?1),and even almost the best among all previously reported binary CoNi selenide-based OER electrocatalysts.Furthermore,in situ electrochemical Raman spectroscopy combined with ex situ X-ray photoelectron spectroscopy analysis indicates that the superb OER catalysis activity can be attributed to the highly active Co-OOH species and modified electron transfer process from Ni element.展开更多
We designed and prepared a hetero-dimensional hybrid (HDH) based on molybdenum selenide (MoSe2) nanodots (NDs) anchored in few-layer MoSe2 nanosheets (NSs) (MoSe2 HDH) via a one-pot hydrothermal process. The...We designed and prepared a hetero-dimensional hybrid (HDH) based on molybdenum selenide (MoSe2) nanodots (NDs) anchored in few-layer MoSe2 nanosheets (NSs) (MoSe2 HDH) via a one-pot hydrothermal process. The MoSe2 HDH exhibits excellent electrocatalytic activity toward hydrogen evolution reaction (HER). This is because, on the one hand, the edge-abundant features of MoSe2 NDs and the unique defect-rich structure at the interface of MoSe2 NSs/NDs could bring in more active sites for HER; on the other hand, the random stacking of the flake-like MoSe2 NSs on the surface of the supporting electrode may achieve efficient charge transport. Additionally, the MoSe2 HDH shows good water stability, desirable biocompatibility, and high near infrared (NIR) photothermal conversion efficiency. Therefore, the MoSe2 HDH is investigated as a nanomedicine in NIR photothermal therapy (PTT) for cancer. Specifically, the MoSe2 HDH can be applied as a dual-modal probe for computed tomography (CT) and photoacoustic tomography (PA) imaging owing to its strong X-ray attenuation ability and NIR absorption. Therefore, the MoSe2 HDH, combining PTT with CT/PA imaging into one system, holds great potential for imaging-guided cancer theranostics. This work may provide an ingenious strategy to prepare other hetero-dimensional layered transition metal dichalcogenides.展开更多
基金The project is supported by the National Natural Science Foundation of China (Nos. 21275076 and 61328401), Jiangsu Provincial Founds for Distinguished Young Scholars (No. BK20130046), Key University Science Research Project of Jiangsu Province (No. 15KJA430006), Program for New Century Excellent Talents in University (No. NCET-13-0853), QingLan Project, Nantong Key Laboratory of New Materials Industrial Technology, SERC Grant (#102170 0142) from A'STAR Singapore, the scholarship from China Scholarships Council (No. 201508320304).
文摘The development of efficient, low-cost, for water splitting, particularly those stable, non-noble-metal electrocatalysts that can catalyze both the hydrogen evolution reaction (HER) at the cathode and oxygen evolution reaction (OER) at the anode, is a challenge. We have developed a facile method for synthesizing CoSe2 nanoparticles uniformly anchored on carbon fiber paper (CoSe2/CF) via pyrolysis and selenization of in situ grown zeolitic imidazolate framework-67 (ZIF-67). CoSe2/CF shows high and stable catalytic activity in both the HER and OER in alkaline solution. At a low cell potential, i.e., 1.63 V, a water electrolyzer equipped with two CoSe2/CF electrodes gave a water-splitting current of 10 mA.cm-2. At a current of 20 mA-cm-2, it can operate without degradation for 30 h. This study not only offers a cost-effective solution for water splitting but also provides a new strategy for developing various catalytic nanostructures by changing the metal-organic framework precursors.
基金supported by National Science Foundation for Young Scientists of China (No.61905161 and 51702219)the National Natural Science Foundation of China (No.61975134,61875138 and 61775147)+1 种基金the Science and Technology Innovation Commission of Shenzhen (No. JCYJ20180206121837007)the Shenzhen Nanshan District Pilotage Team Program (LHTD20170006)
文摘Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power.Moreover,the thermoelectric properties of traditional inorganic and organic materials have been significantly improved over the past few decades.Among these compounds,layered two-dimensional(2D)materials,such as graphene,black phosphorus,transition metal dichalcogenides,IVA–VIA compounds,and MXenes,have generated a large research attention as a group of potentially high-performance thermoelectric materials.Due to their unique electronic,mechanical,thermal,and optoelectronic properties,thermoelectric devices based on such materials can be applied in a variety of applications.Herein,a comprehensive review on the development of 2D materials for thermoelectric applications,as well as theoretical simulations and experimental preparation,is presented.In addition,nanodevice and new applications of 2D thermoelectric materials are also introduced.At last,current challenges are discussed and several prospects in this field are proposed.
基金supported by the National Natural Science Foundation of China(No.51407134,No.52002196)Natural Science Foundation of Shandong Province(No.ZR2019YQ24,No.ZR2020QF084)+2 种基金Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites)Special Financial of Shandong Province(Structural Design of Highefficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams(No.37000022P990304116449)).
文摘The development of wearable multifunctional electromagnetic protective fabrics with multifunctional,low cost,and high efficiency remains a challenge.Here,inspired by the unique flower branch shape of“Thunberg’s meadowsweet”in nature,a nanofibrous composite membrane with hierarchical structure was constructed.Integrating sophisticated 0D@2D@1D hierarchical structures with multiple heterointerfaces can fully unleash the multifunctional application potential of composite membrane.The targeted induction method was used to precisely regulate the formation site and morphology of the metal–organic framework precursor,and intelligently integrate multiple heterostructures to enhance dielectric polarization,which improves the impedance matching and loss mechanisms of the electromagnetic wave absorbing materials.Due to the synergistic enhancement of electrospinning-derived carbon nanofiber“stems”,MOF-derived carbon nanosheet“petals”and transition metal selenide nano-particle“stamens”,the CoxSey/NiSe@CNSs@CNFs(CNCC)composite membrane obtains a minimum reflection loss value(RL_(min))of-68.40 dB at 2.6 mm and a maximum effective absorption bandwidth(EAB)of 8.88 GHz at a thin thickness of 2.0 mm with a filling amount of only 5 wt%.In addition,the multi-component and hierarchical heterostructure endow the fibrous membrane with excellent flexibility,water resistance,thermal management,and other multifunctional properties.This work provides unique perspectives for the precise design and rational application of multifunctional fabrics.
基金Acknowledgements We are grateful for the financial support from the National Natural Science Foundation of China (NSFC, No. 21233005).
文摘A suspension of fine selenium (Se) powder (100 or 200 mesh) in octadecene (Se-SUS) has proven to be a high-performance, versatile, convenient, reproducible, yet green Se precursor. The advantages of Se-SUS arise from its highly reactive chemical nature and flexibility. These two features made it possible to carry out the synthesis of high quality metal selenide nanocrystals with diverse compositions and structures, including binary, core/shelL transition metal doped, and complex composition nanocrystals. These successes further demonstrated that Se-SUS is a powerful Se precursor for solving a few long- standing challenges in the synthesis of high quality selenide nanocrystals. For instance, Se-SUS was successfully employed as a Se precursor for shell growth in high quality core/shell nanocrystals to replace expensive and highly toxic precursors, such as Se-phosphine and bis-trimethylsilyl selenide, with greatly lowered epitaxial temperatures (as low as 150℃) to avoid alloying. As another example, Se-SUS enabled "co-nucleation doping" as a means of preparing high quality Mn doped ZnSe nanocrystals with pure, stable, and highly efficient dopant fluorescence.
文摘High pure tellurium was prepared from raw tellurium containing copper and selenium by chemical method containing oxidation with concentrated nitric acid, leaching with hydrochloric acid, reducing with sulfur dioxide and treating in hydrogen atmosphere at high temperature. Removal ratio of Cu in raw tellurium reaches 99% after raw tellurium is oxidized and leached with HNO3(69%) under the following conditions: 0.96 times stoichiometric quantity of concentrated nitric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Leaching ratio of Te reaches 99% after Te is leached with hydrochloric acid under the following conditions: 1.67 times stoichiometric quantity of hydrochloric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Tellurium powder(99.95%) is obtained when Te(IV) in leachate is reduced with sulfur dioxide. The purity of tellurium increases from 99.954% to 99.999 6% after tellurium(99.95%) is treated in hydrogen atmosphere at 723.15 K for 30 min.
文摘Bismuth selenide(Bi_(2)Se_(3))is an attractive visible-light-responsive semiconductor that can absorb a full range of visible and near-infrared light.However,its poor redox capacity and rapid carrier recombination limit its application in photocatalytic oxidation.In this study,we adopted Bi_(2)Se_(3)as the couple part of graphitic carbon nitride(g-C_(3)N_(4))to construct a Bi_(2)Se_(3)/g-C_(3)N_(4)composite photocatalyst.Through in situ fabrication,the self-developed Bi2O3/g-C_(3)N_(4)precursor was transformed into a Bi_(2)Se_(3)/g-C_(3)N_(4)heterojunction.The as-prepared Bi_(2)Se_(3)/g-C_(3)N_(4)composite exhibited much higher visible-light-driven photocatalytic activity than pristine Bi_(2)Se_(3)and g-C_(3)N_(4)in the removal of phenol.The enhanced photocatalytic activity was ascribed to the S-scheme configuration of Bi_(2)Se_(3)/g-C_(3)N_(4);this was confirmed by the energy-level shift,photoluminescence analysis,computational structure study,and reactive-radical testing.In the S-scheme heterojunction,photo-excited electrons in the conduction band of g-C_(3)N_(4)migrate to the valence band of Bi_(2)Se_(3)and combine with the excited holes therein.By consuming less reactive carriers,the S-scheme heterojunction can not only effectively promote charge separation,but also preserve more reactive photo-generated carriers.This property enhances the photocatalytic activity.
基金Project supported by the National Basic Research Program of China (Grant No. 2007CB607501)the National Natural Science Foundation of China (Grant Nos. 50731006 and 50672118) along with 111 Project (Grant No. B07040)
文摘With good electrical properties and an inherently complex crystal structure, Cu2-xSe is a potential "phonon glass electron crystal" thermoelectric material that has previously not attracted much interest. In this study, Cu2-xSe (0 ≤ x ≤0.25) compounds were synthesized by a melting-quenching method, and then sintered by spark plasma sintering to obtain bulk material. The effect of Cu content on the phase transition and thermoelectric properties of Cu2-xSe were investigated in the temperature range of 300 K-750 K. The results of X-ray diffraction at room temperature show that Cu2-xSe compounds possess a cubic structure with a space group of Fm3m (#225) when 0.15 〈 x ≤ 0.25, whereas they adopt a composite of monoclinic and cubic phases when 0 ≤x ≤ 0.15. The thermoelectric property measurements show that with increasing Cu content, the electrical conductivity decreases, the Seebeck coefficient increases and the thermal conductivity decreases. Due to the relatively good power factor and low thermal conductivity, the nearly stoichiometric Cu2Se compound achieves the highest ZT of 0.38 at 750 K. It is expected that the thermoelectric performance can be further optimized by doping appropriate elements and/or via a nanostructuring approach.
基金supported by the National Natural Science Foundation of China(No.51972023)。
文摘Two-dimensional Ti_(3)C_(2)T_(x) exhibits outstanding rate property and cycle performance in lithium-ion capacitors(LICs)due to its unique layered structure,excellent electronic conductivity,and high specific surface area.However,like graphene,Ti_(3)C_(2)T_(x) restacks during electrochemical cycling due to hydrogen bonding or van der Waals forces,leading to a decrease in the specific surface area and an increase in the diffusion distance of electrolyte ions between the interlayer of the material.Here,a transition metal selenide MoSe_(2) with a special three-stacked atomic layered structure,derived from metal-organic framework(MOF),is introduced into the Ti_(3)C_(2)T_(x) structure through a solvo-thermal method.The synergic effects of rapid Li+diffusion and pillaring effect from the MoSe_(2) and excellent conductivity from the Ti_(3)C_(2)T_(x) sheets endow the material with excellent electrochemical reaction kinetics and capacity.The composite Ti_(3)C_(2)T_(x)@MoSe_(2) material exhibits a high capacity over 300 mAh·g^(-1) at 150 mA·g^(-1) and excellent rate property with a specific capacity of 150 mAh·g^(-1) at 1500 mA·g^(-1).Addition-ally,the material shows a superior capacitive contribution of 86.0%at 2.0 mV·s^(-1) due to the fast electrochemical reactions.A Ti_(3)C_(2)T_(x)@MoSe_(2)//AC LIC device is also fabricated and exhibits stable cycle performance.
基金This work was financially supported by the National Natural Science Foundation of China (NSFC) (No. 21371097) and the Key University Science Research Project of Jiangsu Province (No. 16KJA150004).
文摘Hierarchical nano-architectures comprised of ultrathin ternary selenide (CoNiSe2) nanorods were directly grown on nickel foam (NF). The integrated CoNiSe2/NF functions as a robust electrocatalyst with an extremely high activity and stability for emerging renewable energy technologies, and electrochemical oxygen and hydrogen evolution reactions (OER and HER, respectively). The overpotentials required to deliver a current density of 100 mA·cm^-2 are as low as 307 and 170 mV for the OER and HER, respectively; therefore, the obtained CoNiSe2 is among the most promising earth-abundant catalysts for water splitting. Furthermore, our synthetic sample validates a two-electrode electrolyzer for reducing the cell voltage in the full water splitting reaction to 1.591 V to achieve a current density of 10 mA·cm^-2, which offers a novel inexpensive, integrated selenide/NF electrode for electrocatalytic applications.
基金financially supported by the National Natural Science Foundation of China(No.51772133)the Natural Science Foundation of Shandong Province(No.ZR2017JL022)+1 种基金the Project of“20 Items of University”of Jinan(No.2018GXRC001)the Case-by-Case Project for Top Outstanding Talents of Jinan。
文摘Hollow NiCoSe_(x)(H-NiCoSe_(x)) nanospheres encapsulated with carbon shell were prepared via one-step easy solvothermal method followed by the carbon coating process.H-NiCoSe_(x)@C has large interior void with the uniform dimension around 350 nm and the thickness of carbon shell around 20-30 nm.Coupling with the large interior void as well as robust protective carbon shell,H-NiCoSe_(x)@C can retain the reversible capacity of 805.6 mAh·g^(-1) after 100 cycles at 200 mA·g^(-1).In particular,H-NiCoSe_(x)@C delivers large reversible capacity of 1532.2 mAh·g^(-1) upon cycling for 1000 loops at 1000 mA·g^(-1)with the capacity retention as high as 128.2% upon long period of activation.Even at the high rate of 3000 mA·g^(-1),its specific capacity still retains up to 659.3 mAh·g^(-1).The superior lithium storage performances for H-NiCoSe_(x)@C profit from its robust hollow core-shell structure as well as enhanced electrical conductivity and ion transport.
基金supported by the National Research Foundation of Korea(NRF)grant funded by Korea government(NRF-2019R1A2C2088047 and NRF-2020R1C1C1003375).
文摘Two-dimensional(2D)MXenes are promising as electrode materials for energy storage,owing to their high electronic conductivity and low diffusion barrier.Unfortunately,similar to most 2D materials,MXene nanosheets easily restack during the electrode preparation,which degrades the electrochemical performance of MXene-based materials.A novel synthetic strategy is proposed for converting MXene into restacking-inhibited three-dimensional(3D)balls coated with iron selenides and carbon.This strategy involves the preparation of Fe_(2)O_(3)@carbon/MXene microspheres via a facile ultrasonic spray pyrolysis and subsequent selenization process.Such 3D structuring effectively prevents interlayer restacking,increases the surface area,and accelerates ion transport,while maintaining the attractive properties of MXene.Furthermore,combining iron selenides and carbon with 3D MXene balls offers many more sites for ion storage and enhances the structural robustness of the composite balls.The resultant 3D structured microspheres exhibit a high reversible capacity of 410 mAh g^(−1) after 200 cycles at 0.1 A g^(−1) in potassium-ion batteries,corresponding to the capacity retention of 97% as calculated based on 100 cycles.Even at a high current density of 5.0 A g^(−1),the composite exhibits a discharge capacity of 169 mAh g^(−1).
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 21571145 and 21633008), the Fundamental Research Funds for the Central Universities and Large-scale Instrument and Equipment Sharing Foundation of Wuhan University.
文摘The development of efficient and stable non-noble metal-based electrocatalysts for the oxygen evolution reaction (OER) is one of the essential challenges for the upcoming hydrogen economy. Herein, three-dimensional (3D) mesoporous nickel iron selenide with rose-like microsphere architecture was directly grown on Ni foam via a successive two-step hydrotherrnal method. The unique 3D mesoporous rose-like morphology leads to a higher number of active sites as well as fast mass and electron transport through the entire electrode, and facilitates the release of 02 bubbles formed during the OER catalysis. As a result, the synthesized Ni0.76Fe0.24Se exhibits superior OER performances, with an ultralow overpotential of 197 mV needed to produce a current density of 10 mA.cm-2 in 1 M KOH, outperforming all transition metal selenide OER catalysts reported to date.
基金Y.Hou expresses appreciation of the assistance of the NSFC 51702284 and 21878270Zhejiang Provincial Natural Science Foundation of China(LR19B060002)the Startup Foundation for Hundred-Talent Program of Zhejiang University(112100-193820101/001/022).
文摘Demand of highly efficient earth-abundant transition metal-based electrocatalysts to replace noble metal materials for boosting oxygen evolution reaction(OER)is rapidly growing.Herein,an electrochemically exfoliated graphite(EG)foil supported bimetallic selenide encased in N-doped carbon(EG/(Co,Ni)Se2-NC)hybrid is developed and synthesized by a vapor-phase hydrothermal strategy and subsequent selenization process.The as-prepared EG/(Co,Ni)Se2-NC hybrid exhibits a core-shell structure where the particle diameter of(Co,Ni)Se2 core is about 70 nm and the thickness of N-doped carbon shell is approximately 5 nm.Benefitting from the synergistic effects between the combination of highly active Co species and improved electron transfer from Ni species,and N-doped carbon,the EG/(Co,Ni)Se2-NC hybrid shows remarkable electrocatalytic activity toward OER with a comparatively low overpotential of 258 mV at an current density of 10 mA cm?2 and a small Tafel slope of 73.3 mV dec?1.The excellent OER catalysis performance of EG/(Co,Ni)Se2-NC hybrid is much better than that of commercial Ir/C(343 mV at 10 mA cm?2 and 98.1 mV dec?1),and even almost the best among all previously reported binary CoNi selenide-based OER electrocatalysts.Furthermore,in situ electrochemical Raman spectroscopy combined with ex situ X-ray photoelectron spectroscopy analysis indicates that the superb OER catalysis activity can be attributed to the highly active Co-OOH species and modified electron transfer process from Ni element.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 21601014, 21471016, and 21271023) and the 111 Project (No. B07012). This work was also financially supported by the Beijing Natural Science Foundation (No. 2162046) and National Basic Research Program of China (No. 2016YFA0201603). The authors would like to thank the Analysis & Testing Center of Beijing Institute of Technology for performing FESEM and TEM measurements.
文摘We designed and prepared a hetero-dimensional hybrid (HDH) based on molybdenum selenide (MoSe2) nanodots (NDs) anchored in few-layer MoSe2 nanosheets (NSs) (MoSe2 HDH) via a one-pot hydrothermal process. The MoSe2 HDH exhibits excellent electrocatalytic activity toward hydrogen evolution reaction (HER). This is because, on the one hand, the edge-abundant features of MoSe2 NDs and the unique defect-rich structure at the interface of MoSe2 NSs/NDs could bring in more active sites for HER; on the other hand, the random stacking of the flake-like MoSe2 NSs on the surface of the supporting electrode may achieve efficient charge transport. Additionally, the MoSe2 HDH shows good water stability, desirable biocompatibility, and high near infrared (NIR) photothermal conversion efficiency. Therefore, the MoSe2 HDH is investigated as a nanomedicine in NIR photothermal therapy (PTT) for cancer. Specifically, the MoSe2 HDH can be applied as a dual-modal probe for computed tomography (CT) and photoacoustic tomography (PA) imaging owing to its strong X-ray attenuation ability and NIR absorption. Therefore, the MoSe2 HDH, combining PTT with CT/PA imaging into one system, holds great potential for imaging-guided cancer theranostics. This work may provide an ingenious strategy to prepare other hetero-dimensional layered transition metal dichalcogenides.