Cloud backup has been an important issue ever since large quantities of valuable data have been stored on the personal computing devices. Data reduction techniques, such as deduplication, delta encoding, and Lempel-Z...Cloud backup has been an important issue ever since large quantities of valuable data have been stored on the personal computing devices. Data reduction techniques, such as deduplication, delta encoding, and Lempel-Ziv (LZ) compression, performed at the client side before data transfer can help ease cloud backup by saving network bandwidth and reducing cloud storage space. However, client-side data reduction in cloud backup services faces efficiency and privacy challenges. In this paper, we present Pangolin, a secure and efficient cloud backup service for personal data storage by exploiting application awareness. It can speedup backup operations by application-aware client-side data reduction technique, and mitigate data security risks by integrating selective encryption into data reduction for sensitive applications. Our experimental evaluation, based on a prototype implementation, shows that our scheme can improve data reduction efficiency over the state-of-the-art methods by shortening the backup window size to 33%-75%, and its security mechanism for' sensitive applications has negligible impact on backup window size.展开更多
Encryption for compressed video streams has attracted increasing attention with the exponential growth of digital multimedia delivery and consumption. However, most algorithms proposed in the literature do not effect...Encryption for compressed video streams has attracted increasing attention with the exponential growth of digital multimedia delivery and consumption. However, most algorithms proposed in the literature do not effectively address the peculiarities of security and performance requirements. This paper presents a chaos-based encryption algorithm called the chaotic selective encryption of compressed video (CSECV) which exploits the characteristics of the compressed video. The encryption has three separate layers that can be selected according to the security needs of the application and the processing capability of the client computer. The chaotic pseudo-random sequence generator used to generate the key-sequence to randomize the important fields in the compressed video stream has its parameters encrypted by an asymmetric cipher and placed into the stream. The resulting stream is still a valid video stream. CSECV has significant advantages over existing algorithms for security, decryption speed, implementation flexibility, and error preservation.展开更多
基金supported in part by the National High Technology Research and Development 863 Program of China under Grant No.2013AA013201the National Natural Science Foundation of China under Grant Nos.61025009,61232003,61120106005,61170288,and 61379146
文摘Cloud backup has been an important issue ever since large quantities of valuable data have been stored on the personal computing devices. Data reduction techniques, such as deduplication, delta encoding, and Lempel-Ziv (LZ) compression, performed at the client side before data transfer can help ease cloud backup by saving network bandwidth and reducing cloud storage space. However, client-side data reduction in cloud backup services faces efficiency and privacy challenges. In this paper, we present Pangolin, a secure and efficient cloud backup service for personal data storage by exploiting application awareness. It can speedup backup operations by application-aware client-side data reduction technique, and mitigate data security risks by integrating selective encryption into data reduction for sensitive applications. Our experimental evaluation, based on a prototype implementation, shows that our scheme can improve data reduction efficiency over the state-of-the-art methods by shortening the backup window size to 33%-75%, and its security mechanism for' sensitive applications has negligible impact on backup window size.
基金Supported by the National Key Research TechnologyProject of Ministry of Information Industry of China(No. 19991118)
文摘Encryption for compressed video streams has attracted increasing attention with the exponential growth of digital multimedia delivery and consumption. However, most algorithms proposed in the literature do not effectively address the peculiarities of security and performance requirements. This paper presents a chaos-based encryption algorithm called the chaotic selective encryption of compressed video (CSECV) which exploits the characteristics of the compressed video. The encryption has three separate layers that can be selected according to the security needs of the application and the processing capability of the client computer. The chaotic pseudo-random sequence generator used to generate the key-sequence to randomize the important fields in the compressed video stream has its parameters encrypted by an asymmetric cipher and placed into the stream. The resulting stream is still a valid video stream. CSECV has significant advantages over existing algorithms for security, decryption speed, implementation flexibility, and error preservation.