Data Integrity is a critical component of Data lifecycle management. Its importance increases even more in a complex and dynamic landscape. Actions like unauthorized access, unauthorized modifications, data manipulati...Data Integrity is a critical component of Data lifecycle management. Its importance increases even more in a complex and dynamic landscape. Actions like unauthorized access, unauthorized modifications, data manipulations, audit tampering, data backdating, data falsification, phishing and spoofing are no longer restricted to rogue individuals but in fact also prevalent in systematic organizations and states as well. Therefore, data security requires strong data integrity measures and associated technical controls in place. Without proper customized framework in place, organizations are prone to high risk of financial, reputational, revenue losses, bankruptcies, and legal penalties which we shall discuss further throughout this paper. We will also explore some of the improvised and innovative techniques in product development to better tackle the challenges and requirements of data security and integrity.展开更多
Quantitative security metrics are desirable for measuring the performance of information security controls. Security metrics help to make functional and business decisions for improving the performance and cost of the...Quantitative security metrics are desirable for measuring the performance of information security controls. Security metrics help to make functional and business decisions for improving the performance and cost of the security controls. However, defining enterprise-level security metrics has already been listed as one of the hard problems in the Info Sec Research Council's hard problems list. Almost all the efforts in defining absolute security metrics for the enterprise security have not been proved fruitful. At the same time, with the maturity of the security industry, there has been a continuous emphasis from the regulatory bodies on establishing measurable security metrics. This paper addresses this need and proposes a relative security metric model that derives three quantitative security metrics named Attack Resiliency Measure(ARM), Performance Improvement Factor(PIF), and Cost/Benefit Measure(CBM) for measuring the performance of the security controls. For the effectiveness evaluation of the proposed security metrics, we took the secure virtual machine(VM) migration protocol as the target of assessment. The virtual-ization technologies are rapidly changing the landscape of the computing world. Devising security metrics for virtualized environment is even more challenging. As secure virtual machine migration is an evolving area and no standard protocol is available specifically for secure VM migration. This paper took the secure virtual machine migration protocol as the target of assessment and applied the proposed relative security metric model for measuring the Attack Resiliency Measure, Performance Improvement Factor, and Cost/Benefit Measure of the secure VM migration protocol.展开更多
文摘Data Integrity is a critical component of Data lifecycle management. Its importance increases even more in a complex and dynamic landscape. Actions like unauthorized access, unauthorized modifications, data manipulations, audit tampering, data backdating, data falsification, phishing and spoofing are no longer restricted to rogue individuals but in fact also prevalent in systematic organizations and states as well. Therefore, data security requires strong data integrity measures and associated technical controls in place. Without proper customized framework in place, organizations are prone to high risk of financial, reputational, revenue losses, bankruptcies, and legal penalties which we shall discuss further throughout this paper. We will also explore some of the improvised and innovative techniques in product development to better tackle the challenges and requirements of data security and integrity.
文摘Quantitative security metrics are desirable for measuring the performance of information security controls. Security metrics help to make functional and business decisions for improving the performance and cost of the security controls. However, defining enterprise-level security metrics has already been listed as one of the hard problems in the Info Sec Research Council's hard problems list. Almost all the efforts in defining absolute security metrics for the enterprise security have not been proved fruitful. At the same time, with the maturity of the security industry, there has been a continuous emphasis from the regulatory bodies on establishing measurable security metrics. This paper addresses this need and proposes a relative security metric model that derives three quantitative security metrics named Attack Resiliency Measure(ARM), Performance Improvement Factor(PIF), and Cost/Benefit Measure(CBM) for measuring the performance of the security controls. For the effectiveness evaluation of the proposed security metrics, we took the secure virtual machine(VM) migration protocol as the target of assessment. The virtual-ization technologies are rapidly changing the landscape of the computing world. Devising security metrics for virtualized environment is even more challenging. As secure virtual machine migration is an evolving area and no standard protocol is available specifically for secure VM migration. This paper took the secure virtual machine migration protocol as the target of assessment and applied the proposed relative security metric model for measuring the Attack Resiliency Measure, Performance Improvement Factor, and Cost/Benefit Measure of the secure VM migration protocol.