We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-pho...We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-photon mixed states, In our scheme, only if all the sharers collaborate together can they establish a joint key with the message sender and extract the secret message from the sender's encrypted message. This scheme can be implemented using only a Bell singlet, a one-qubit state and polarization identification of single photon, so it is completely feasible according to the present-day technique.展开更多
In this paper,we propose a framework for lightning-fast privacy-preserving outsourced computation framework in the cloud,which we refer to as LightCom.Using LightCom,a user can securely achieve the outsource data stor...In this paper,we propose a framework for lightning-fast privacy-preserving outsourced computation framework in the cloud,which we refer to as LightCom.Using LightCom,a user can securely achieve the outsource data storage and fast,secure data processing in a single cloud server different from the existing multi-server outsourced computation model.Specifically,we first present a general secure computation framework for LightCom under the cloud server equipped with multiple Trusted Processing Units(TPUs),which face the side-channel attack.Under the LightCom,we design two specified fast processing toolkits,which allow the user to achieve the commonly-used secure integer computation and secure floating-point computation against the side-channel information leakage of TPUs,respectively.Furthermore,our LightCom can also guarantee access pattern protection during the data processing and achieve private user information retrieve after the computation.We prove that the proposed LightCom can successfully achieve the goal of single cloud outsourced data processing to avoid the extra computation server and trusted computation server,and demonstrate the utility and the efficiency of LightCom using simulations.展开更多
Reliable communication imposes an upper limit on the achievable rate,namely the Shannon capacity.Wyner's wiretap coding ensures a security constraint and reliability,but results in a decrease of achievable rate.To...Reliable communication imposes an upper limit on the achievable rate,namely the Shannon capacity.Wyner's wiretap coding ensures a security constraint and reliability,but results in a decrease of achievable rate.To mitigate the loss in secrecy rate,we propose a coding scheme in which we use sufficiently old messages as key and prove that multiple messages are secure with respect to all the information possessed by the eavesdropper.We also show that we can achieve security in the strong sense.Next,we study a fading wiretap channel with full channel state information of the eavesdropper's channel and use our coding/decoding scheme to achieve a secrecy capacity close to the Shannon capacity of the main channel(in the ergodic sense).Finally,we study a case where the transmitter does not have instantaneous information of the channel state of the eavesdropper,but only its distribution.展开更多
In this paper,we propose a framework for lightning-fast privacy-preserving outsourced computation framework in the cloud,which we refer to as LightCom.Using LightCom,a user can securely achieve the outsource data stor...In this paper,we propose a framework for lightning-fast privacy-preserving outsourced computation framework in the cloud,which we refer to as LightCom.Using LightCom,a user can securely achieve the outsource data storage and fast,secure data processing in a single cloud server different from the existing multi-server outsourced computation model.Specifically,we first present a general secure computation framework for LightCom under the cloud server equipped with multiple Trusted Processing Units(TPUs),which face the side-channel attack.Under the LightCom,we design two specified fast processing toolkits,which allow the user to achieve the commonly-used secure integer computation and secure floating-point computation against the side-channel information leakage of TPUs,respectively.Furthermore,our LightCom can also guarantee access pattern protection during the data processing and achieve private user information retrieve after the computation.We prove that the proposed LightCom can successfully achieve the goal of single cloud outsourced data processing to avoid the extra computation server and trusted computation server,and demonstrate the utility and the efficiency of LightCom using simulations.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10304022, the Science-Technology Fund of Anhui Province for 0utstanding Youth under Grant No. 06042087, the General Fund of the Educational Committee of Anhui Province under Grant No. 2006KJ260B, and the Key Fund of the Ministry of Education of China under Grant No. 206063. We are very grateful to Prof. ZHANG Zhan-Jun for his detailed instructions and help.
文摘We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-photon mixed states, In our scheme, only if all the sharers collaborate together can they establish a joint key with the message sender and extract the secret message from the sender's encrypted message. This scheme can be implemented using only a Bell singlet, a one-qubit state and polarization identification of single photon, so it is completely feasible according to the present-day technique.
基金This research is supported in part by the AXA Research Fund,National Natural Science Foundation of China under Grant Nos.61702105,No.61872091the Cloud Technology Endowed Professorship from the the 80/20 Foundation.
文摘In this paper,we propose a framework for lightning-fast privacy-preserving outsourced computation framework in the cloud,which we refer to as LightCom.Using LightCom,a user can securely achieve the outsource data storage and fast,secure data processing in a single cloud server different from the existing multi-server outsourced computation model.Specifically,we first present a general secure computation framework for LightCom under the cloud server equipped with multiple Trusted Processing Units(TPUs),which face the side-channel attack.Under the LightCom,we design two specified fast processing toolkits,which allow the user to achieve the commonly-used secure integer computation and secure floating-point computation against the side-channel information leakage of TPUs,respectively.Furthermore,our LightCom can also guarantee access pattern protection during the data processing and achieve private user information retrieve after the computation.We prove that the proposed LightCom can successfully achieve the goal of single cloud outsourced data processing to avoid the extra computation server and trusted computation server,and demonstrate the utility and the efficiency of LightCom using simulations.
文摘Reliable communication imposes an upper limit on the achievable rate,namely the Shannon capacity.Wyner's wiretap coding ensures a security constraint and reliability,but results in a decrease of achievable rate.To mitigate the loss in secrecy rate,we propose a coding scheme in which we use sufficiently old messages as key and prove that multiple messages are secure with respect to all the information possessed by the eavesdropper.We also show that we can achieve security in the strong sense.Next,we study a fading wiretap channel with full channel state information of the eavesdropper's channel and use our coding/decoding scheme to achieve a secrecy capacity close to the Shannon capacity of the main channel(in the ergodic sense).Finally,we study a case where the transmitter does not have instantaneous information of the channel state of the eavesdropper,but only its distribution.
基金supported in part by the AXA Research Fund,National Natural Science Foundation of China under Grant Nos.61702105,No.61872091the Cloud Technology Endowed Professorship from the the 80/20 Foundation.
文摘In this paper,we propose a framework for lightning-fast privacy-preserving outsourced computation framework in the cloud,which we refer to as LightCom.Using LightCom,a user can securely achieve the outsource data storage and fast,secure data processing in a single cloud server different from the existing multi-server outsourced computation model.Specifically,we first present a general secure computation framework for LightCom under the cloud server equipped with multiple Trusted Processing Units(TPUs),which face the side-channel attack.Under the LightCom,we design two specified fast processing toolkits,which allow the user to achieve the commonly-used secure integer computation and secure floating-point computation against the side-channel information leakage of TPUs,respectively.Furthermore,our LightCom can also guarantee access pattern protection during the data processing and achieve private user information retrieve after the computation.We prove that the proposed LightCom can successfully achieve the goal of single cloud outsourced data processing to avoid the extra computation server and trusted computation server,and demonstrate the utility and the efficiency of LightCom using simulations.