现有结合特征提取与预测模型的方法不能准确把握金融时间序列的混沌性与交互性,导致预测精度不高。针对此问题,提出一种基于二次分解与长短期记忆(long short term memory,LSTM)网络的金融时间序列预测算法。使用变分模态分解方法与集...现有结合特征提取与预测模型的方法不能准确把握金融时间序列的混沌性与交互性,导致预测精度不高。针对此问题,提出一种基于二次分解与长短期记忆(long short term memory,LSTM)网络的金融时间序列预测算法。使用变分模态分解方法与集成经验模态分解方法依次解析金融时间序列数据,得到能表达数据混沌性特征的模态;将模态信息输入到融合有因子分解机(factorization machine,FM)的长短期记忆网络模型中,融合获取到的长记忆性特征与交互性特征,进而预测最终的结果;选取沪深300指数的历史数据作为实验数据集,通过多组对比实验验证算法的有效性。实验结果表明,提出的算法可以有效提升模型的预测能力,同时表达金融时间序列的混沌性、长记忆性、交互性。展开更多
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin...针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。展开更多
文摘现有结合特征提取与预测模型的方法不能准确把握金融时间序列的混沌性与交互性,导致预测精度不高。针对此问题,提出一种基于二次分解与长短期记忆(long short term memory,LSTM)网络的金融时间序列预测算法。使用变分模态分解方法与集成经验模态分解方法依次解析金融时间序列数据,得到能表达数据混沌性特征的模态;将模态信息输入到融合有因子分解机(factorization machine,FM)的长短期记忆网络模型中,融合获取到的长记忆性特征与交互性特征,进而预测最终的结果;选取沪深300指数的历史数据作为实验数据集,通过多组对比实验验证算法的有效性。实验结果表明,提出的算法可以有效提升模型的预测能力,同时表达金融时间序列的混沌性、长记忆性、交互性。
文摘针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。