A class of polynomial primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function, with parameters p and q, is presented. Its growth term is between linear and qu...A class of polynomial primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function, with parameters p and q, is presented. Its growth term is between linear and quadratic. Some new tools for the analysis of the algorithms are proposed. The complexity bounds of O(√Nlog N log N/ε) for large-update methods and O(√Nlog N/ε) for smallupdate methods match the best known complexity bounds obtained for these methods. Numerical tests demonstrate the behavior of the algorithms for different results of the parameters p and q.展开更多
本文基于一个有限罚函数,设计了关于二阶锥优化问题的原始-对偶路径跟踪内点算法,由于该罚函数在可行域的边界取有限值,因而它不是常规的罚函数,尽管如此,它良好的解析性质使得我们能分析算法并得到基于大步校正和小步校正方法目前较好...本文基于一个有限罚函数,设计了关于二阶锥优化问题的原始-对偶路径跟踪内点算法,由于该罚函数在可行域的边界取有限值,因而它不是常规的罚函数,尽管如此,它良好的解析性质使得我们能分析算法并得到基于大步校正和小步校正方法目前较好的多项式时间复杂性分别为O(N^(1/2)log N log N/ε)和O(N^(1/2)log N/ε),其中N为二阶锥的个数.展开更多
文摘A class of polynomial primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function, with parameters p and q, is presented. Its growth term is between linear and quadratic. Some new tools for the analysis of the algorithms are proposed. The complexity bounds of O(√Nlog N log N/ε) for large-update methods and O(√Nlog N/ε) for smallupdate methods match the best known complexity bounds obtained for these methods. Numerical tests demonstrate the behavior of the algorithms for different results of the parameters p and q.
基金Project Sponsored by Shanghai Educational Committee Foundation(No.06NS031)Shanghai Pujiang Program (No.06RJ14039).
文摘本文基于一个有限罚函数,设计了关于二阶锥优化问题的原始-对偶路径跟踪内点算法,由于该罚函数在可行域的边界取有限值,因而它不是常规的罚函数,尽管如此,它良好的解析性质使得我们能分析算法并得到基于大步校正和小步校正方法目前较好的多项式时间复杂性分别为O(N^(1/2)log N log N/ε)和O(N^(1/2)log N/ε),其中N为二阶锥的个数.