雷达技术是为了探测远距离目标而发展起来的。弹载雷达处理回波信号,实现对移动目标的测速与测距。微弱运动目标的“远距、低可探测、高机动”性使传统的检测方法难以识别、探测、跟踪。为提高对这类目标的检测能力,常会对信号进行积累...雷达技术是为了探测远距离目标而发展起来的。弹载雷达处理回波信号,实现对移动目标的测速与测距。微弱运动目标的“远距、低可探测、高机动”性使传统的检测方法难以识别、探测、跟踪。为提高对这类目标的检测能力,常会对信号进行积累。但由于目标的运动,长时间积累会产生跨越距离走动单元与跨速度单元现象。研究了匀加速运动目标回波信号模型,分析其中引起距离走动的分项,分析比较用一阶与二阶Keystone算法校正距离走动的效果,选择用CZT-IFFT(Chirp-Z transformation-inverse fast fourier transform)的方法实现二阶Keystone校正距离弯曲与距离走动,并对比了不同校正方法的信噪比改善效果。展开更多
文摘雷达技术是为了探测远距离目标而发展起来的。弹载雷达处理回波信号,实现对移动目标的测速与测距。微弱运动目标的“远距、低可探测、高机动”性使传统的检测方法难以识别、探测、跟踪。为提高对这类目标的检测能力,常会对信号进行积累。但由于目标的运动,长时间积累会产生跨越距离走动单元与跨速度单元现象。研究了匀加速运动目标回波信号模型,分析其中引起距离走动的分项,分析比较用一阶与二阶Keystone算法校正距离走动的效果,选择用CZT-IFFT(Chirp-Z transformation-inverse fast fourier transform)的方法实现二阶Keystone校正距离弯曲与距离走动,并对比了不同校正方法的信噪比改善效果。