In the context of deep geological disposal of radioactive waste in clay formations, the thermo-hydro- mechanical (THM) behavior of the indurated Callovo-Oxfordian and Opalinus clay rocks has been extensively investi...In the context of deep geological disposal of radioactive waste in clay formations, the thermo-hydro- mechanical (THM) behavior of the indurated Callovo-Oxfordian and Opalinus clay rocks has been extensively investigated in our laboratory under repository relevant conditions: (1) rock stress covering the range from the lithostatic state to redistributed levels after excavation; (2) variation of the humidity in the openings due to ventilation as well as hydraulic drained and undrained boundary conditions; (3) gas generation from corrosion of metallic components within repositories; and (4) thermal loading from high-level radioactive waste up to the designed maximum temperature of 90 ~C and even beyond to 150 ~C, Various important aspects concerning the long-term barrier functions of the clay host rocks have been studied: (1) fundamental concept for effective stress in the porous clay-water system; (2) stress- driven deformation and damage as well as resulting permeability changes; (3) moisture influences on mechanical properties; (4) self-sealing of fractures under mechanical load and swelling]slaking of clay minerals upon water uptake; (5) gas migration in fractured and resealed claystones; and (6) thermal impact on the hydro-mechanical behavior and properties, Major findings from the investigations are summarized in this paper,展开更多
The sealing behavior of fractures in clay rocks for deep disposal of radioactive waste has been comprehensively investigated at the GRS laboratory. Various sealing experiments were performed on strongly cracked sample...The sealing behavior of fractures in clay rocks for deep disposal of radioactive waste has been comprehensively investigated at the GRS laboratory. Various sealing experiments were performed on strongly cracked samples of different sizes from the Callovo-Oxfordian argillite and the Opalinus clay under rel- evant repository conditions. The fractured samples were compacted and flowed through with gas or synthetic pore-water under confining stresses up to 18 MPa and elevated temperatures from 20 ℃ to 90℃. Sealing of fractures was quantified by measurements of their closure and permeability. Under the applied thermo-hydro-mechanical (THM) conditions, significant fracture closure and permeability decrease to very low levels of 10^-19 to 10^-21 m^2 were observed within time periods of months to years. The properties of the resealed claystones are comparable with those of the intact rock mass. All test results suggest high sealing potentials of the studied claystones.展开更多
Thermal effects on the Callovo-Oxfordian and Opalinus clay rocks for hosting high-level radioactive waste were comprehensively investigated with laboratory and in situ experiments under repository relevant conditions:...Thermal effects on the Callovo-Oxfordian and Opalinus clay rocks for hosting high-level radioactive waste were comprehensively investigated with laboratory and in situ experiments under repository relevant conditions:(1) stresses covering the range from the initial lithostatic state to redistributed levels after excavation,(2) hydraulic drained and undrained boundaries, and(3) heating from ambient temperature up to 90℃-120℃ and a subsequent cooling phase. The laboratory experiments were performed on normal-sized and large hollow cylindrical samples in various respects of thermal expansion and contraction, thermally-induced pore water pressure, temperature influences on deformation and strength, thermal impacts on swelling, fracture sealing and permeability. The laboratory results obtained from the samples are consistent with the in situ observations during heating experiments in the underground research laboratories at Bure and Mont-Terri. Even though the claystones showed significant responses to thermal loading, no negative effects on their favorable barrier properties were observed.展开更多
For the geological disposal of high level radioactive wastes, an excavation damaged zone (EDZ) having high hydraulic conductivity resulting from the development of fractures in the rock adjacent to the tunnels will ...For the geological disposal of high level radioactive wastes, an excavation damaged zone (EDZ) having high hydraulic conductivity resulting from the development of fractures in the rock adjacent to the tunnels will be one of the potential pathways for radioactive contaminant transport. The potential pathways will be sealed by closure components, that is, a combination of tunnel plug, backfill and grout, the latter material being a clay-based mixture in consideration of the need for long-term stability of the seals. Clay-based grout is one of the effective candidate materials that can be used to interrupt the migration of radionuclides through an EDZ. Laboratory testing of clay-based grout using pulverized bentonite, with the objective of improvement in grout penetration into a rockmass, was conducted. The results showed that the pulverization of clay-based grout had a positive effect on filtration.展开更多
基金funded by the German Federal Ministry for Economic Affairs and Energy(BMWi)under contract number02E10377
文摘In the context of deep geological disposal of radioactive waste in clay formations, the thermo-hydro- mechanical (THM) behavior of the indurated Callovo-Oxfordian and Opalinus clay rocks has been extensively investigated in our laboratory under repository relevant conditions: (1) rock stress covering the range from the lithostatic state to redistributed levels after excavation; (2) variation of the humidity in the openings due to ventilation as well as hydraulic drained and undrained boundary conditions; (3) gas generation from corrosion of metallic components within repositories; and (4) thermal loading from high-level radioactive waste up to the designed maximum temperature of 90 ~C and even beyond to 150 ~C, Various important aspects concerning the long-term barrier functions of the clay host rocks have been studied: (1) fundamental concept for effective stress in the porous clay-water system; (2) stress- driven deformation and damage as well as resulting permeability changes; (3) moisture influences on mechanical properties; (4) self-sealing of fractures under mechanical load and swelling]slaking of clay minerals upon water uptake; (5) gas migration in fractured and resealed claystones; and (6) thermal impact on the hydro-mechanical behavior and properties, Major findings from the investigations are summarized in this paper,
基金co-funded by the European Commission (EC) as part of the sixth Euratom research and training Framework Programme (FP6) on nuclear energy under contract FP6-036449by the German Federal Ministry of Economics and Technology (BMWi) under contracts 02E10045 and 02E10377
文摘The sealing behavior of fractures in clay rocks for deep disposal of radioactive waste has been comprehensively investigated at the GRS laboratory. Various sealing experiments were performed on strongly cracked samples of different sizes from the Callovo-Oxfordian argillite and the Opalinus clay under rel- evant repository conditions. The fractured samples were compacted and flowed through with gas or synthetic pore-water under confining stresses up to 18 MPa and elevated temperatures from 20 ℃ to 90℃. Sealing of fractures was quantified by measurements of their closure and permeability. Under the applied thermo-hydro-mechanical (THM) conditions, significant fracture closure and permeability decrease to very low levels of 10^-19 to 10^-21 m^2 were observed within time periods of months to years. The properties of the resealed claystones are comparable with those of the intact rock mass. All test results suggest high sealing potentials of the studied claystones.
基金funding by the German Federal Ministry of Economics and Technology (BMWi) under contract No.02E10377the French National Radioactive Waste Management Agency (Andra)
文摘Thermal effects on the Callovo-Oxfordian and Opalinus clay rocks for hosting high-level radioactive waste were comprehensively investigated with laboratory and in situ experiments under repository relevant conditions:(1) stresses covering the range from the initial lithostatic state to redistributed levels after excavation,(2) hydraulic drained and undrained boundaries, and(3) heating from ambient temperature up to 90℃-120℃ and a subsequent cooling phase. The laboratory experiments were performed on normal-sized and large hollow cylindrical samples in various respects of thermal expansion and contraction, thermally-induced pore water pressure, temperature influences on deformation and strength, thermal impacts on swelling, fracture sealing and permeability. The laboratory results obtained from the samples are consistent with the in situ observations during heating experiments in the underground research laboratories at Bure and Mont-Terri. Even though the claystones showed significant responses to thermal loading, no negative effects on their favorable barrier properties were observed.
文摘For the geological disposal of high level radioactive wastes, an excavation damaged zone (EDZ) having high hydraulic conductivity resulting from the development of fractures in the rock adjacent to the tunnels will be one of the potential pathways for radioactive contaminant transport. The potential pathways will be sealed by closure components, that is, a combination of tunnel plug, backfill and grout, the latter material being a clay-based mixture in consideration of the need for long-term stability of the seals. Clay-based grout is one of the effective candidate materials that can be used to interrupt the migration of radionuclides through an EDZ. Laboratory testing of clay-based grout using pulverized bentonite, with the objective of improvement in grout penetration into a rockmass, was conducted. The results showed that the pulverization of clay-based grout had a positive effect on filtration.