In this work,we focus on the conforming and nonconforming leap-frog virtual element methods for the generalized nonlinear Schrodinger equation,and establish their unconditional stability and optimal error estimates.By...In this work,we focus on the conforming and nonconforming leap-frog virtual element methods for the generalized nonlinear Schrodinger equation,and establish their unconditional stability and optimal error estimates.By constructing a time-discrete system,the error between the solutions of the continuous model and the numerical scheme is separated into the temporal error and the spatial error,which makes the spatial error τ-independent.The inverse inequalities in the existing conforming and new constructed nonconforming virtual element spaces are utilized to derive the L^(∞)-norm uniform boundedness of numerical solutions without any restrictions on time-space step ratio,and then unconditionally optimal error estimates of the numerical schemes are obtained naturally.What needs to be emphasized is that if we use the pre-existing nonconforming virtual elements,there is no way to derive the L^(∞)-norm uniform boundedness of the functions in the nonconforming virtual element spaces so as to be hard to get the corresponding inverse inequalities.Finally,several numerical examples are reported to confirm our theoretical results.展开更多
This paper is concerned with the following logarithmic Schrodinger system:{-Δu_(1)+ω_(1)u_(1)=u_(1)u_(1)logu_(1)^(2)+2p/p+q|u_(2)|^(q)|u_(1)|^(p-2)u_(1),-Δu_(2)+ω_(2)u_(2)=u_(2)u_(2)log u_(2)^(2)+2q/p+q|u_(1)|^(p)...This paper is concerned with the following logarithmic Schrodinger system:{-Δu_(1)+ω_(1)u_(1)=u_(1)u_(1)logu_(1)^(2)+2p/p+q|u_(2)|^(q)|u_(1)|^(p-2)u_(1),-Δu_(2)+ω_(2)u_(2)=u_(2)u_(2)log u_(2)^(2)+2q/p+q|u_(1)|^(p)|u_(2)|^(q-2)u_(2),∫_(Ω)|u_(i)|^(2)dx=ρ_(i),i=1,2,(u_(1),u_(2))∈H_(0)^(1)(Ω;R^(2)),where Ω=R^(N)or Ω■R^(N)(N≥3)is a bounded smooth domain,andω_(i)R,μ_(i),ρ_(i)>0 for i=1,2.Moreover,p,q≥1,and 2≤p+q≤2^(*),where 2^(*):=2N/N-2.By using a Gagliardo-Nirenberg inequality and a careful estimation of u log u^(2),firstly,we provide a unified proof of the existence of the normalized ground state solution for all 2≤p+q≤2^(*).Secondly,we consider the stability of normalized ground state solutions.Finally,we analyze the behavior of solutions for the Sobolev-subcritical case and pass to the limit as the exponent p+q approaches 2^(*).Notably,the uncertainty of the sign of u log u^(2)in(0,+∞)is one of the difficulties of this paper,and also one of the motivations we are interested in.In particular,we can establish the existence of positive normalized ground state solutions for the Brézis-Nirenberg type problem with logarithmic perturbations(i.e.,p+q=2^(*)).In addition,our study includes proving the existence of solutions to the logarithmic type Bréis-Nirenberg problem with and without the L^(2)-mass.constraint ∫_(Ω)|u_(i)|^(2)dx=ρ_(i)(i=1,2)by two different methods,respectively.Our results seem to be the first result of the normalized solution of the coupled nonlinear Schrodinger system with logarithmic perturbations.展开更多
In this paper,we consider the following Schrodinger-Poisson system{-ε^(2)Δu+V(x)u+K(x)Φ(x)u=|u|^(p-1)u in R^(N),-ΔΦ(x)=K(x)u^(2)in RN,,where e is a small parameter,1<p<N+2/N-2,N∈[3,6],and V(x)and K(x)are p...In this paper,we consider the following Schrodinger-Poisson system{-ε^(2)Δu+V(x)u+K(x)Φ(x)u=|u|^(p-1)u in R^(N),-ΔΦ(x)=K(x)u^(2)in RN,,where e is a small parameter,1<p<N+2/N-2,N∈[3,6],and V(x)and K(x)are potential functions with different decay at infinity.We first prove the non-degeneracy of a radial low-energy solution.Moreover,by using the non-degenerate solution,we construct a new type of infinitely many solutions for the above system,which are called“dichotomous solutions”,i.e.,these solutions concentrate both in a bounded domain and near infinity.展开更多
In this paper,we are concerned with solutions to the fractional Schrodinger-Poisson system■ with prescribed mass ∫_(R^(3))|u|^(2)dx=a^(2),where a> 0 is a prescribed number,μ> 0 is a paremeter,s ∈(0,1),2 <...In this paper,we are concerned with solutions to the fractional Schrodinger-Poisson system■ with prescribed mass ∫_(R^(3))|u|^(2)dx=a^(2),where a> 0 is a prescribed number,μ> 0 is a paremeter,s ∈(0,1),2 <q <2_(s)^(*),and 2_(s)^(*)=6/(3-2s) is the fractional critical Sobolev exponent.In the L2-subcritical case,we show the existence of multiple normalized solutions by using the genus theory and the truncation technique;in the L^(2)-supercritical case,we obtain a couple of normalized solutions by developing a fiber map.Under both cases,to recover the loss of compactness of the energy functional caused by the doubly critical growth,we need to adopt the concentration-compactness principle.Our results complement and improve upon some existing studies on the fractional Schrodinger-Poisson system with a nonlocal critical term.展开更多
The Hamilton principle is a variation principle describing the isolated and conservative systems, its Lagrange function is the difference between kinetic energy and potential energy. By Feynman path integration, we ca...The Hamilton principle is a variation principle describing the isolated and conservative systems, its Lagrange function is the difference between kinetic energy and potential energy. By Feynman path integration, we can obtain the standard Schrodinger equation. In this paper, we have given the generalized Hamilton principle, which can describe the heat exchange system, and the nonconservative force system. On this basis, we have further given their generalized Lagrange functions and Hamilton functions. With the Feynman path integration, we have given the generalized Schrodinger equation of nonconservative force system and the heat exchange system.展开更多
In this paper,we consider the following Schrodinger-Poisson system{-Δu+ηΦu=f(x,μ)+μ^(5),x∈Ω,-ΔФ=μ^(2),x∈Ω,μ=Φ=0,x∈■Ω,whereΩis a smooth bounded domain in R^(3),η=±1 and the continuous function f...In this paper,we consider the following Schrodinger-Poisson system{-Δu+ηΦu=f(x,μ)+μ^(5),x∈Ω,-ΔФ=μ^(2),x∈Ω,μ=Φ=0,x∈■Ω,whereΩis a smooth bounded domain in R^(3),η=±1 and the continuous function f satisfies some suitable conditions.Based on the Mountain pass theorem,we prove the existence of positive ground state solutions.展开更多
In this paper,we study the following Schrodinger-Poisson system with critical growth:■We establish the existence of a positive ground state solution and a least energy sign-changing solution,providing that the nonlin...In this paper,we study the following Schrodinger-Poisson system with critical growth:■We establish the existence of a positive ground state solution and a least energy sign-changing solution,providing that the nonlinearity f is super-cubic,subcritical and that the potential V(x)has a potential well.展开更多
The main objective of this paper is to present an efficient structure-preserving scheme,which is based on the idea of the scalar auxiliary variable approach,for solving the twodimensional space-fractional nonlinear Sc...The main objective of this paper is to present an efficient structure-preserving scheme,which is based on the idea of the scalar auxiliary variable approach,for solving the twodimensional space-fractional nonlinear Schrodinger equation.First,we reformulate the equation as an canonical Hamiltonian system,and obtain a new equivalent system via introducing a scalar variable.Then,we construct a semi-discrete energy-preserving scheme by using the Fourier pseudo-spectral method to discretize the equivalent system in space direction.After that,applying the Crank-Nicolson method on the temporal direction gives a linearly-implicit scheme in the fully-discrete version.As expected,the proposed scheme can preserve the energy exactly and more efficient in the sense that only decoupled equations with constant coefficients need to be solved at each time step.Finally,numerical experiments are provided to demonstrate the efficiency and conservation of the scheme.展开更多
In this paper, we study the existence and multiplicity of solutions for the following fractional Schrodinger-Poisson system:({ε2S(-△)Su+V(x)u+φu=|u|2*s-2+f(u)in R3ε2s(-△)sφ=u in R3(0.1)where 3/...In this paper, we study the existence and multiplicity of solutions for the following fractional Schrodinger-Poisson system:({ε2S(-△)Su+V(x)u+φu=|u|2*s-2+f(u)in R3ε2s(-△)sφ=u in R3(0.1)where 3/4〈s〈1,2*:+6/3-2s)is the fractional critical exponent for 3-dimension, the potential V : R3→ R is continuous and has global minima, and f is continuous and supercubic but subcritical at infinity. We prove the existence and multiplicity of solutions for System (0.1) via variational methods.展开更多
A robust time-dependent approach to the high-resolution photoabsorption spectrum of Rydberg atoms in magnetic fields is presented. Traditionally we have to numerically diagonalize a huge matrix to solve the eigen-prob...A robust time-dependent approach to the high-resolution photoabsorption spectrum of Rydberg atoms in magnetic fields is presented. Traditionally we have to numerically diagonalize a huge matrix to solve the eigen-problem and then to obtain the spectral information. This matrix operation requires high-speed computers with large memories. Alternatively we present a unitary but very easily parallelized time-evolution method in an inexpensive way, which is very accurate and stable even in long-time scaie evolution. With this method, we perform the spectral caiculation of hydrogen atom in magnetic field, which agrees well with the experimentai observation. It can be extended to study the dynamics of Rydberg atoms in more complicated cases such as in combined electric and magnetic fields.展开更多
In this article, we consider the well-posedness of a coherently coupled Schrodinger system with four waves mixing in space dimension n ≤ 4. The Cauchy problem for the cubic system is studied in L^2 for n ≤ 2 and in ...In this article, we consider the well-posedness of a coherently coupled Schrodinger system with four waves mixing in space dimension n ≤ 4. The Cauchy problem for the cubic system is studied in L^2 for n ≤ 2 and in H^1 for n ≤ 4. We obtain two sharp conditions between global existence and blow up.展开更多
We study compact finite difference methods for the Schrodinger-Poisson equation in a bounded domain and establish their optimal error estimates under proper regularity assumptions on wave functionψand external potent...We study compact finite difference methods for the Schrodinger-Poisson equation in a bounded domain and establish their optimal error estimates under proper regularity assumptions on wave functionψand external potential V(x).The CrankNicolson compact finite difference method and the semi-implicit compact finite difference method are both of order O(h^(4)+τ^(2))in discrete l^(2),H^(1) and l^(∞) norms with mesh size h and time step τ.For the errors of compact finite difference approximation to the second derivative and Poisson potential are nonlocal,thus besides the standard energy method and mathematical induction method,the key technique in analysis is to estimate the nonlocal approximation errors in discrete l^(∞) and H^(1) norm by discrete maximum principle of elliptic equation and properties of some related matrix.Also some useful inequalities are established in this paper.Finally,extensive numerical results are reported to support our error estimates of the numerical methods.展开更多
We study the following nonlinear fractional Schrodinger-Poisson system with critical growth:{(-△)sμ+μ+φμ=f(μ)+|μ|2s-2μ,x∈R3.(-△)tφ=μ2x∈R3,(0.1)where 0<s,t<1,2s+2t>3 and 2s=6/3-2s is the critical ...We study the following nonlinear fractional Schrodinger-Poisson system with critical growth:{(-△)sμ+μ+φμ=f(μ)+|μ|2s-2μ,x∈R3.(-△)tφ=μ2x∈R3,(0.1)where 0<s,t<1,2s+2t>3 and 2s=6/3-2s is the critical Sobolev exponent in 1R3.Under some more general assumptions on f,we prove that(0.1)admits a nontrivial ground state solution by using a constrained minimization on a Nehari-Pohozaev manifold.展开更多
We study a Schrodinger system with the sum of linear and nonlinear couplings.Applying index theory,we obtain infinitely many solutions for the system with periodic potent ials.Moreover,by using the concentration compa...We study a Schrodinger system with the sum of linear and nonlinear couplings.Applying index theory,we obtain infinitely many solutions for the system with periodic potent ials.Moreover,by using the concentration compactness met hod,we prove the exis tence and nonexistence of ground state solutions for the system with close-to-periodic potentials.展开更多
This paper is concerned with the nonlinear Schrodinger-Kirchhoff system-(a+b∫R^3/u/^2dx)△u+λV(x)u=f(x,u)in R^3,where constants a>0,6≥0 andλ>0 is a parameter.We require that V(x)∈C(R^3)and has a potential w...This paper is concerned with the nonlinear Schrodinger-Kirchhoff system-(a+b∫R^3/u/^2dx)△u+λV(x)u=f(x,u)in R^3,where constants a>0,6≥0 andλ>0 is a parameter.We require that V(x)∈C(R^3)and has a potential well V^-1(0).Combining this with other suitable assumptions on K and f,the existence of nontrivial solutions is obtained via variational methods.Furthermore,the concentration behavior of the nontrivial solution is also explored on the set V^-1(0)asλ→+∞as A—>H-oo as well.It is worth noting that the(PS)-condition can not be directly got as done in the literature,which makes the problem more complicated.To overcome this difficulty,we adopt different method.展开更多
In this paper we prove that the Schrodinger-Boussinesq system with solution(u,v,(-∂xx)-^(2/1)vt)is locally wellposed in H^(s)×H^(s)×Hs^(-1),s≥-1/4.The local wellposedness is obtained by the transformation f...In this paper we prove that the Schrodinger-Boussinesq system with solution(u,v,(-∂xx)-^(2/1)vt)is locally wellposed in H^(s)×H^(s)×Hs^(-1),s≥-1/4.The local wellposedness is obtained by the transformation from the problem into a nonlinear Schrodinger type equation system and the contraction mapping theorem in a suitably modified Bourgain type space inspired by the work of Kishimoto,Tsugawa.This result improves the known local wellposedness in H^(s)×H^(s)×H^(s-1),s>-1/4 given by Farah.展开更多
With the rapid development of communication technology,optical fiber communication has become a key research area in communications.When there are two signals in the optical fiber,the transmission of them can be abstr...With the rapid development of communication technology,optical fiber communication has become a key research area in communications.When there are two signals in the optical fiber,the transmission of them can be abstracted as a high-order coupled nonlinear Schr¨odinger system.In this paper,by using the Hirota’s method,we construct the bilinear forms,and study the analytical solution of three solitons in the case of focusing interactions.In addition,by adjusting different wave numbers for phase control,we further discuss the influence of wave numbers on soliton transmissions.It is verified that wave numbers k_(11),k_(21),k_(31),k_(22),and k_(32)can control the fusion and fission of solitons.The results are beneficial to the study of all-optical switches and fiber lasers in nonlinear optics.展开更多
基金supported by the NSF of China(Grant Nos.11801527,11701522,11771163,12011530058,11671160,1191101330)by the China Postdoctoral Science Foundation(Grant Nos.2018M632791,2019M662506).
文摘In this work,we focus on the conforming and nonconforming leap-frog virtual element methods for the generalized nonlinear Schrodinger equation,and establish their unconditional stability and optimal error estimates.By constructing a time-discrete system,the error between the solutions of the continuous model and the numerical scheme is separated into the temporal error and the spatial error,which makes the spatial error τ-independent.The inverse inequalities in the existing conforming and new constructed nonconforming virtual element spaces are utilized to derive the L^(∞)-norm uniform boundedness of numerical solutions without any restrictions on time-space step ratio,and then unconditionally optimal error estimates of the numerical schemes are obtained naturally.What needs to be emphasized is that if we use the pre-existing nonconforming virtual elements,there is no way to derive the L^(∞)-norm uniform boundedness of the functions in the nonconforming virtual element spaces so as to be hard to get the corresponding inverse inequalities.Finally,several numerical examples are reported to confirm our theoretical results.
文摘This paper is concerned with the following logarithmic Schrodinger system:{-Δu_(1)+ω_(1)u_(1)=u_(1)u_(1)logu_(1)^(2)+2p/p+q|u_(2)|^(q)|u_(1)|^(p-2)u_(1),-Δu_(2)+ω_(2)u_(2)=u_(2)u_(2)log u_(2)^(2)+2q/p+q|u_(1)|^(p)|u_(2)|^(q-2)u_(2),∫_(Ω)|u_(i)|^(2)dx=ρ_(i),i=1,2,(u_(1),u_(2))∈H_(0)^(1)(Ω;R^(2)),where Ω=R^(N)or Ω■R^(N)(N≥3)is a bounded smooth domain,andω_(i)R,μ_(i),ρ_(i)>0 for i=1,2.Moreover,p,q≥1,and 2≤p+q≤2^(*),where 2^(*):=2N/N-2.By using a Gagliardo-Nirenberg inequality and a careful estimation of u log u^(2),firstly,we provide a unified proof of the existence of the normalized ground state solution for all 2≤p+q≤2^(*).Secondly,we consider the stability of normalized ground state solutions.Finally,we analyze the behavior of solutions for the Sobolev-subcritical case and pass to the limit as the exponent p+q approaches 2^(*).Notably,the uncertainty of the sign of u log u^(2)in(0,+∞)is one of the difficulties of this paper,and also one of the motivations we are interested in.In particular,we can establish the existence of positive normalized ground state solutions for the Brézis-Nirenberg type problem with logarithmic perturbations(i.e.,p+q=2^(*)).In addition,our study includes proving the existence of solutions to the logarithmic type Bréis-Nirenberg problem with and without the L^(2)-mass.constraint ∫_(Ω)|u_(i)|^(2)dx=ρ_(i)(i=1,2)by two different methods,respectively.Our results seem to be the first result of the normalized solution of the coupled nonlinear Schrodinger system with logarithmic perturbations.
基金supported by National Natural Science Foundation of China(Grant Nos.12101274 and 12226309)the Jiangxi Province Science Fund for Distinguished Young Scholars(Grant No.20224ACB218001)+3 种基金supported by National Natural Science Foundation of China(Grant No.12271223)Jiangxi Provincial Natural Science Foundation(Grant No.20212ACB201003)Jiangxi Two Thousand Talents Program(Grant No.jxsq2019101001)Double-high Talents Program in Jiangxi Province。
文摘In this paper,we consider the following Schrodinger-Poisson system{-ε^(2)Δu+V(x)u+K(x)Φ(x)u=|u|^(p-1)u in R^(N),-ΔΦ(x)=K(x)u^(2)in RN,,where e is a small parameter,1<p<N+2/N-2,N∈[3,6],and V(x)and K(x)are potential functions with different decay at infinity.We first prove the non-degeneracy of a radial low-energy solution.Moreover,by using the non-degenerate solution,we construct a new type of infinitely many solutions for the above system,which are called“dichotomous solutions”,i.e.,these solutions concentrate both in a bounded domain and near infinity.
基金supported by the BIT Research and Innovation Promoting Project(2023YCXY046)the NSFC(11771468,11971027,11971061,12171497 and 12271028)+1 种基金the BNSF(1222017)the Fundamental Research Funds for the Central Universities。
文摘In this paper,we are concerned with solutions to the fractional Schrodinger-Poisson system■ with prescribed mass ∫_(R^(3))|u|^(2)dx=a^(2),where a> 0 is a prescribed number,μ> 0 is a paremeter,s ∈(0,1),2 <q <2_(s)^(*),and 2_(s)^(*)=6/(3-2s) is the fractional critical Sobolev exponent.In the L2-subcritical case,we show the existence of multiple normalized solutions by using the genus theory and the truncation technique;in the L^(2)-supercritical case,we obtain a couple of normalized solutions by developing a fiber map.Under both cases,to recover the loss of compactness of the energy functional caused by the doubly critical growth,we need to adopt the concentration-compactness principle.Our results complement and improve upon some existing studies on the fractional Schrodinger-Poisson system with a nonlocal critical term.
文摘The Hamilton principle is a variation principle describing the isolated and conservative systems, its Lagrange function is the difference between kinetic energy and potential energy. By Feynman path integration, we can obtain the standard Schrodinger equation. In this paper, we have given the generalized Hamilton principle, which can describe the heat exchange system, and the nonconservative force system. On this basis, we have further given their generalized Lagrange functions and Hamilton functions. With the Feynman path integration, we have given the generalized Schrodinger equation of nonconservative force system and the heat exchange system.
基金Supported by the Fundamental Research Funds of China West Normal University(No.18B015)Natural Science Foundation of Sichuan(No.23NSFSC1720).
文摘In this paper,we consider the following Schrodinger-Poisson system{-Δu+ηΦu=f(x,μ)+μ^(5),x∈Ω,-ΔФ=μ^(2),x∈Ω,μ=Φ=0,x∈■Ω,whereΩis a smooth bounded domain in R^(3),η=±1 and the continuous function f satisfies some suitable conditions.Based on the Mountain pass theorem,we prove the existence of positive ground state solutions.
基金supported by the National NaturalScience Foundation of China(12071170,11961043,11931012,12271196)supported by the excellent doctoral dissertation cultivation grant(2022YBZZ034)from Central China Normal University。
文摘In this paper,we study the following Schrodinger-Poisson system with critical growth:■We establish the existence of a positive ground state solution and a least energy sign-changing solution,providing that the nonlinearity f is super-cubic,subcritical and that the potential V(x)has a potential well.
基金supported by the National Natural Science Foundation of China(Grant Nos.12171245,11971416,11971242)the Natural Science Foundation of Henan Province(No.222300420280)the Program for Scientific and Technological Innovation Talents in Universities of Henan Province(No.22HASTIT018).
文摘The main objective of this paper is to present an efficient structure-preserving scheme,which is based on the idea of the scalar auxiliary variable approach,for solving the twodimensional space-fractional nonlinear Schrodinger equation.First,we reformulate the equation as an canonical Hamiltonian system,and obtain a new equivalent system via introducing a scalar variable.Then,we construct a semi-discrete energy-preserving scheme by using the Fourier pseudo-spectral method to discretize the equivalent system in space direction.After that,applying the Crank-Nicolson method on the temporal direction gives a linearly-implicit scheme in the fully-discrete version.As expected,the proposed scheme can preserve the energy exactly and more efficient in the sense that only decoupled equations with constant coefficients need to be solved at each time step.Finally,numerical experiments are provided to demonstrate the efficiency and conservation of the scheme.
基金supported by National Natural Science Foundation of China(Grant Nos.11361078 and 11661083)
文摘In this paper, we study the existence and multiplicity of solutions for the following fractional Schrodinger-Poisson system:({ε2S(-△)Su+V(x)u+φu=|u|2*s-2+f(u)in R3ε2s(-△)sφ=u in R3(0.1)where 3/4〈s〈1,2*:+6/3-2s)is the fractional critical exponent for 3-dimension, the potential V : R3→ R is continuous and has global minima, and f is continuous and supercubic but subcritical at infinity. We prove the existence and multiplicity of solutions for System (0.1) via variational methods.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10674154 and 10774162.
文摘A robust time-dependent approach to the high-resolution photoabsorption spectrum of Rydberg atoms in magnetic fields is presented. Traditionally we have to numerically diagonalize a huge matrix to solve the eigen-problem and then to obtain the spectral information. This matrix operation requires high-speed computers with large memories. Alternatively we present a unitary but very easily parallelized time-evolution method in an inexpensive way, which is very accurate and stable even in long-time scaie evolution. With this method, we perform the spectral caiculation of hydrogen atom in magnetic field, which agrees well with the experimentai observation. It can be extended to study the dynamics of Rydberg atoms in more complicated cases such as in combined electric and magnetic fields.
基金supported by the China National Natural Science Foundation under grant number 11171357
文摘In this article, we consider the well-posedness of a coherently coupled Schrodinger system with four waves mixing in space dimension n ≤ 4. The Cauchy problem for the cubic system is studied in L^2 for n ≤ 2 and in H^1 for n ≤ 4. We obtain two sharp conditions between global existence and blow up.
基金supported by Ministry of Education of Singapore grant R-146-000-120-112the National Natural Science Foundation of China(Grant No.11131005)the Doctoral Programme Foundation of Institution of Higher Education of China(Grant No.20110002110064).
文摘We study compact finite difference methods for the Schrodinger-Poisson equation in a bounded domain and establish their optimal error estimates under proper regularity assumptions on wave functionψand external potential V(x).The CrankNicolson compact finite difference method and the semi-implicit compact finite difference method are both of order O(h^(4)+τ^(2))in discrete l^(2),H^(1) and l^(∞) norms with mesh size h and time step τ.For the errors of compact finite difference approximation to the second derivative and Poisson potential are nonlocal,thus besides the standard energy method and mathematical induction method,the key technique in analysis is to estimate the nonlocal approximation errors in discrete l^(∞) and H^(1) norm by discrete maximum principle of elliptic equation and properties of some related matrix.Also some useful inequalities are established in this paper.Finally,extensive numerical results are reported to support our error estimates of the numerical methods.
基金the Science and Technology Project of Education Department in Jiangxi Province(GJJ180357)the second author was supported by NSFC(11701178).
文摘We study the following nonlinear fractional Schrodinger-Poisson system with critical growth:{(-△)sμ+μ+φμ=f(μ)+|μ|2s-2μ,x∈R3.(-△)tφ=μ2x∈R3,(0.1)where 0<s,t<1,2s+2t>3 and 2s=6/3-2s is the critical Sobolev exponent in 1R3.Under some more general assumptions on f,we prove that(0.1)admits a nontrivial ground state solution by using a constrained minimization on a Nehari-Pohozaev manifold.
文摘We study a Schrodinger system with the sum of linear and nonlinear couplings.Applying index theory,we obtain infinitely many solutions for the system with periodic potent ials.Moreover,by using the concentration compactness met hod,we prove the exis tence and nonexistence of ground state solutions for the system with close-to-periodic potentials.
基金Supported by the Youth Foundation of Shangqiu Institute of Technology(2018XKQ01)。
文摘This paper is concerned with the nonlinear Schrodinger-Kirchhoff system-(a+b∫R^3/u/^2dx)△u+λV(x)u=f(x,u)in R^3,where constants a>0,6≥0 andλ>0 is a parameter.We require that V(x)∈C(R^3)and has a potential well V^-1(0).Combining this with other suitable assumptions on K and f,the existence of nontrivial solutions is obtained via variational methods.Furthermore,the concentration behavior of the nontrivial solution is also explored on the set V^-1(0)asλ→+∞as A—>H-oo as well.It is worth noting that the(PS)-condition can not be directly got as done in the literature,which makes the problem more complicated.To overcome this difficulty,we adopt different method.
文摘In this paper we prove that the Schrodinger-Boussinesq system with solution(u,v,(-∂xx)-^(2/1)vt)is locally wellposed in H^(s)×H^(s)×Hs^(-1),s≥-1/4.The local wellposedness is obtained by the transformation from the problem into a nonlinear Schrodinger type equation system and the contraction mapping theorem in a suitably modified Bourgain type space inspired by the work of Kishimoto,Tsugawa.This result improves the known local wellposedness in H^(s)×H^(s)×H^(s-1),s>-1/4 given by Farah.
基金supported by the National Natural Science Foundation of China(Grant Nos.11875008,12075034,11975001,and 11975172)the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology(Grant No.SKL2018KF04)the Fundamental Research Funds for the Central Universities,China(Grant No.2019XD-A09-3)。
文摘With the rapid development of communication technology,optical fiber communication has become a key research area in communications.When there are two signals in the optical fiber,the transmission of them can be abstracted as a high-order coupled nonlinear Schr¨odinger system.In this paper,by using the Hirota’s method,we construct the bilinear forms,and study the analytical solution of three solitons in the case of focusing interactions.In addition,by adjusting different wave numbers for phase control,we further discuss the influence of wave numbers on soliton transmissions.It is verified that wave numbers k_(11),k_(21),k_(31),k_(22),and k_(32)can control the fusion and fission of solitons.The results are beneficial to the study of all-optical switches and fiber lasers in nonlinear optics.