Ecologically-friendly reservoir operation pro- cedures aim to conserve key ecosystem properties in the rivers, while minimizing the sacrifice of socioeconomic interests. This study focused on the Jinping cascaded rese...Ecologically-friendly reservoir operation pro- cedures aim to conserve key ecosystem properties in the rivers, while minimizing the sacrifice of socioeconomic interests. This study focused on the Jinping cascaded reservoirs as a case study. An optimization model was developed to explore a balance between the ecological flow requirement (EFR) of a target fish species (Schizothorax chongi) in the dewatered natural channel section, and annual power production. The EFR for the channel was determined by the Tennant method and a fish habitat model, respectively. The optimization model was solved by using an adaptive real-coded genetic algorithm. Several operation scenarios corresponding to the ecological flow series were evaluated using the optimization model. Through comparisons, an optimal operational scheme, which combines relatively low power production loss with a preferred ecological flow regime in the dewatered channel, is proposed for the cascaded reservoirs. Under the recommended scheme, the discharge into the Dahewan river reach in the dry season ranges from 36 to 50 m3/s. This will enable at least 50% of the target fish habitats in the channel to be conserved, at a cost of only 2.5% annual power production loss. The study demonstrates that the use of EFRs is an efficient approach to the optimization of reservoir operation in an ecologically friendly way. Similar modeling, for other important fish species and ecosystem functions, supplemented by field validation of results, is needed in order to secure the long-term conservation of the affected river ecosystem.展开更多
Fish artificial breeding and release is an important method to restore wild populations of endemic fish species around the world.Schizothorax wangchiachii(SW)is an endemic fish in the upper Yangtze River and is one of...Fish artificial breeding and release is an important method to restore wild populations of endemic fish species around the world.Schizothorax wangchiachii(SW)is an endemic fish in the upper Yangtze River and is one of the most important species for the artificial breeding and release program implemented in the Yalong River drainage system in China.It is unclear how artificially bred SW adapts to the changeable wild environment post-release,after being in a controlled and very different artificial environment.Thus,the gut samples were collected and analyzed for food composition and microbial 16S rRNA in artificially bred SW juveniles at day 0(before release),5,10,15,20,25,and 30 after release to the lower reaches of the Yalong River.The results indicated that SW began to ingest periphytic algae from the natural habitat before day 5,and this feeding habit is gradually stabilized at day 15.Prior to release,Fusobacteria are the dominant bacteria in the gut microbiota of SW,while Proteobacteria and Cyanobacteria generally are the dominant bacteria after release.The results of microbial assembly mechanisms illustrated that deterministic processes played a more prominent role than stochastic processes in the gut microbial community of artificially bred SW juveniles after releasing into the wild.Overall,the present study integrates the macroscopic and microscopic methods to provide an insight into the food and gut microbial reorganization in the released SW.This study will be an important research direction to explore the ecological adaptability of artificially bred fish after releasing into the wild.展开更多
Laboratory-reared Schizothorax davidi larvae and juveniles were examined to assess the formation and characteristics of David’s schizothoracin otoliths.Otolith development was observed and their formation period was ...Laboratory-reared Schizothorax davidi larvae and juveniles were examined to assess the formation and characteristics of David’s schizothoracin otoliths.Otolith development was observed and their formation period was verifi ed by monitoring larvae and juveniles of knownage.The results revealed that lapilli and sagittae developed before hatching,and the first otolith increment was identified at 2 days post hatching in both.The shape of lapilli was relatively stable during development compared with that of sagittae;however,growth of four sagittae and lapilli areas was consistent,but the posterior area grew faster than the anterior area and the ventral surface grew faster than the dorsal surface.Similarly,the sum length of the radius of the anterior and posterior areas on sagittae and lapilli were linearly and binomially related to total fish length,respectively.Moreover,daily deposition rates were validated by monitoring knownage larvae and juveniles.The increase in lapilli width was 1.88±0.080 0μm at the ninth increment,which reached a maximum and the decreased gradually toward the otolith edge,whereas that of sagittae increased more slowly.These results illustrate the developmental biology of S.davidi,which will aid in population conservation and fish stock management.展开更多
基金Acknowledgements The authors are grateful for the financial support of the National Basic Research Program of China (No. 2010CB429004), the National Natural Science Foundation of China (Grant Nos. 51279196 and 51109012), the Public Welfare Project (201101005), and the '100 Talent Program of Chinese Academy of Sciences (A 1049)'. Great appreciations are expressed to the anonymous reviewers for the valuable comments and careful corrections.
文摘Ecologically-friendly reservoir operation pro- cedures aim to conserve key ecosystem properties in the rivers, while minimizing the sacrifice of socioeconomic interests. This study focused on the Jinping cascaded reservoirs as a case study. An optimization model was developed to explore a balance between the ecological flow requirement (EFR) of a target fish species (Schizothorax chongi) in the dewatered natural channel section, and annual power production. The EFR for the channel was determined by the Tennant method and a fish habitat model, respectively. The optimization model was solved by using an adaptive real-coded genetic algorithm. Several operation scenarios corresponding to the ecological flow series were evaluated using the optimization model. Through comparisons, an optimal operational scheme, which combines relatively low power production loss with a preferred ecological flow regime in the dewatered channel, is proposed for the cascaded reservoirs. Under the recommended scheme, the discharge into the Dahewan river reach in the dry season ranges from 36 to 50 m3/s. This will enable at least 50% of the target fish habitats in the channel to be conserved, at a cost of only 2.5% annual power production loss. The study demonstrates that the use of EFRs is an efficient approach to the optimization of reservoir operation in an ecologically friendly way. Similar modeling, for other important fish species and ecosystem functions, supplemented by field validation of results, is needed in order to secure the long-term conservation of the affected river ecosystem.
基金The authors thank the Fish Reproduction Station of Jinping-Guandi,China for providing the place for dissecting experiments.This study was supported by grants from the Yalong River Hydropower Development Company,Ltd.(No.YLDC-ZBA-2018116)the National Natural Science Foundation of China(No.31900373).We thank Megan Price for her help with language editing.
文摘Fish artificial breeding and release is an important method to restore wild populations of endemic fish species around the world.Schizothorax wangchiachii(SW)is an endemic fish in the upper Yangtze River and is one of the most important species for the artificial breeding and release program implemented in the Yalong River drainage system in China.It is unclear how artificially bred SW adapts to the changeable wild environment post-release,after being in a controlled and very different artificial environment.Thus,the gut samples were collected and analyzed for food composition and microbial 16S rRNA in artificially bred SW juveniles at day 0(before release),5,10,15,20,25,and 30 after release to the lower reaches of the Yalong River.The results indicated that SW began to ingest periphytic algae from the natural habitat before day 5,and this feeding habit is gradually stabilized at day 15.Prior to release,Fusobacteria are the dominant bacteria in the gut microbiota of SW,while Proteobacteria and Cyanobacteria generally are the dominant bacteria after release.The results of microbial assembly mechanisms illustrated that deterministic processes played a more prominent role than stochastic processes in the gut microbial community of artificially bred SW juveniles after releasing into the wild.Overall,the present study integrates the macroscopic and microscopic methods to provide an insight into the food and gut microbial reorganization in the released SW.This study will be an important research direction to explore the ecological adaptability of artificially bred fish after releasing into the wild.
基金Supported by the Double Branch Plan of Sichuan Agricultural University(Nos.03571421,03571779)
文摘Laboratory-reared Schizothorax davidi larvae and juveniles were examined to assess the formation and characteristics of David’s schizothoracin otoliths.Otolith development was observed and their formation period was verifi ed by monitoring larvae and juveniles of knownage.The results revealed that lapilli and sagittae developed before hatching,and the first otolith increment was identified at 2 days post hatching in both.The shape of lapilli was relatively stable during development compared with that of sagittae;however,growth of four sagittae and lapilli areas was consistent,but the posterior area grew faster than the anterior area and the ventral surface grew faster than the dorsal surface.Similarly,the sum length of the radius of the anterior and posterior areas on sagittae and lapilli were linearly and binomially related to total fish length,respectively.Moreover,daily deposition rates were validated by monitoring knownage larvae and juveniles.The increase in lapilli width was 1.88±0.080 0μm at the ninth increment,which reached a maximum and the decreased gradually toward the otolith edge,whereas that of sagittae increased more slowly.These results illustrate the developmental biology of S.davidi,which will aid in population conservation and fish stock management.