This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
本文的目标是在一般的p-线性空间和局部p-凸空间框架下建立针对单值和拟上半连续集值映射的不动点定理、最佳逼近定理、和对应的Leray-Schauder非线性(二择一)选择原理,这里p∈(0,1].我们建立的不动点定理是在p-线性空间和局部p-凸空间...本文的目标是在一般的p-线性空间和局部p-凸空间框架下建立针对单值和拟上半连续集值映射的不动点定理、最佳逼近定理、和对应的Leray-Schauder非线性(二择一)选择原理,这里p∈(0,1].我们建立的不动点定理是在p-线性空间和局部p-凸空间对Schauder猜想的肯定答复,对应的最佳逼近定理和Leray-Schauder选择原理也是非线性泛函分析的核心工具.这些新结果统一和推广了目前在数学文献中存在的理论成果,也是对作者最近工作([Fixed Point Theory Algorithms Sci.Eng.,2022,2022:Paper Nos.20,26])的继续和深度发展.展开更多
This paper deals with the existence of travelling wave fronts of delayed reaction diffusion systems with partial quasi-monotonicity. We propose a concept of "desirable pair of upper-lower solutions", through which a...This paper deals with the existence of travelling wave fronts of delayed reaction diffusion systems with partial quasi-monotonicity. We propose a concept of "desirable pair of upper-lower solutions", through which a subset can be constructed. We then apply the Schauder's fixed point theorem to some appropriate operator in this subset to obtain the existence of the travelling wave fronts.展开更多
In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of t...In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution.展开更多
文摘This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
文摘本文的目标是在一般的p-线性空间和局部p-凸空间框架下建立针对单值和拟上半连续集值映射的不动点定理、最佳逼近定理、和对应的Leray-Schauder非线性(二择一)选择原理,这里p∈(0,1].我们建立的不动点定理是在p-线性空间和局部p-凸空间对Schauder猜想的肯定答复,对应的最佳逼近定理和Leray-Schauder选择原理也是非线性泛函分析的核心工具.这些新结果统一和推广了目前在数学文献中存在的理论成果,也是对作者最近工作([Fixed Point Theory Algorithms Sci.Eng.,2022,2022:Paper Nos.20,26])的继续和深度发展.
基金Supported by the National Natural Science Foundation of China(No.19971032)the second author is supported by Natural Science Foundation of Canadaby a Petro Canada Young Innovator Award.
文摘This paper deals with the existence of travelling wave fronts of delayed reaction diffusion systems with partial quasi-monotonicity. We propose a concept of "desirable pair of upper-lower solutions", through which a subset can be constructed. We then apply the Schauder's fixed point theorem to some appropriate operator in this subset to obtain the existence of the travelling wave fronts.
文摘In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution.