The climatic and environmental effects of atmospheric aerosols are a hot topic in global science community, and radiative properties of the aerosols are one of the important parameters in assessing climatic change. He...The climatic and environmental effects of atmospheric aerosols are a hot topic in global science community, and radiative properties of the aerosols are one of the important parameters in assessing climatic change. Here we studied the black carbon concentration and absorption coefficient measured with aethalometers, scattering coefficient measured with nephelometers, and single scattering albedo derived at an atmospheric composition watch station in Guangzhou from 2004 to 2007. Our main results are as follows. The data of black carbon concentration and absorption coefficients measured with instruments cannot be directly used until they are measured in parallel with internationally accepted instruments for comparison, calibration, and reduction. After evaluation of the data, the result shows that the monthly mean of BC concentration varies 3.1―14.8 μg·m-3 and the concentration decreases by about 1 μg·m-3 in average over the four years; It is higher in the dry season with a multi-year mean of 8.9 μg/m3 and lower in the rainy season with a multi-year mean of 8.0 μg·m-3; The extreme maximum of monthly mean concentration occurred in December 2004 and extreme minimum in July 2007, and a 4-year mean is 8.4 μg·m-3. It is also shown that monthly mean scattering coefficient derived varies 129 -565 Mm-1, monthly mean absorption coefficient 32-139 Mm-1, and monthly mean single scattering albedo 0.71-0.91, with annual mean values of 0.80, 0.82, 0.79 and 0.84 for 2004, 2005, 2006 and 2007, respectively. Three instruments were used to take simultaneous measurements of BC in PM10, PM2.5, and PM1 and the results showed that PM2.5 took up about 90% of PM10 and PM1 accounted for about 68% of PM2.5, and BC aerosols are mainly present in fine particulates. The variability of BC concentrations is quite consistent between the Nancun station (141 m above sea level) and the Panyu station (13 m above sea level), which are 8 km apart from each other. The concentration in higher altitude station (Panyu) is consistently lower than展开更多
An analytical solution for scattering of plane P waves by circular-arc layered alluvial valleys was derived by Fourier-Bessel series expansion technique, and the solution was utilized to analyze the effects of alluvia...An analytical solution for scattering of plane P waves by circular-arc layered alluvial valleys was derived by Fourier-Bessel series expansion technique, and the solution was utilized to analyze the effects of alluvial sequence and their relative stiffness on the scattering of incident waves.展开更多
The problem of imaging through thick scattering media is encountered in many disciplines of science,ranging from mesoscopic physics to astronomy.Photons become diffusive after propagating through a scattering medium w...The problem of imaging through thick scattering media is encountered in many disciplines of science,ranging from mesoscopic physics to astronomy.Photons become diffusive after propagating through a scattering medium with an optical thickness of over 10 times the scattering mean free path.As a result,no image but only noise-like patterns can be directly formed.We propose a hybrid neural network for computational imaging through such thick scattering media,demonstrating the reconstruction of image information from various targets hidden behind a white polystyrene slab of 3 mm in thickness or 13.4 times the scattering mean free path.We also demonstrate that the target image can be retrieved with acceptable quality from a very small fraction of its scattered pattern,suggesting that the speckle pattern produced in this way is highly redundant.This leads to a profound question of how the information of the target being encoded into the speckle is to be addressed in future studies.展开更多
The China Spallation Neutron Source (CSNS) is an accelerator-based multidisciplinary user facility to be constructed in Dongguan, Guangdong, China. The CSNS complex consists of an H- linear accelerator, a rapid cycl...The China Spallation Neutron Source (CSNS) is an accelerator-based multidisciplinary user facility to be constructed in Dongguan, Guangdong, China. The CSNS complex consists of an H- linear accelerator, a rapid cycling synchrotron accelerating the beam to 1.6 GeV, a solid-tungsten target station, and instruments for spallation neutron applications. The facility operates at 25 Hz repetition rate with an initial design beam power of 120 kW and is upgradeable to 500 kW. Construction of the CSNS project will lay the foundation of a leading national research center based on advanced proton-accelerator technology, pulsed neutron-scattering technology, and related programs including muon, fast neutron, and proton applications as well as medical therapy and accelerator-driven subcritical reactor (ADS) applications to serve China's strategic needs in scientific research and technological innovation for the next 30 plus years.展开更多
基金Supported by Natural Science Foundation of China (Grant Nos. U0733004,40375002, 40418008, 40775011)National High Technology R & D Program of China (Grant Nos. 2006AA06A306 and 2006AA06A308)National Basic Research Program of China (Grant No. 2005CB422207)
文摘The climatic and environmental effects of atmospheric aerosols are a hot topic in global science community, and radiative properties of the aerosols are one of the important parameters in assessing climatic change. Here we studied the black carbon concentration and absorption coefficient measured with aethalometers, scattering coefficient measured with nephelometers, and single scattering albedo derived at an atmospheric composition watch station in Guangzhou from 2004 to 2007. Our main results are as follows. The data of black carbon concentration and absorption coefficients measured with instruments cannot be directly used until they are measured in parallel with internationally accepted instruments for comparison, calibration, and reduction. After evaluation of the data, the result shows that the monthly mean of BC concentration varies 3.1―14.8 μg·m-3 and the concentration decreases by about 1 μg·m-3 in average over the four years; It is higher in the dry season with a multi-year mean of 8.9 μg/m3 and lower in the rainy season with a multi-year mean of 8.0 μg·m-3; The extreme maximum of monthly mean concentration occurred in December 2004 and extreme minimum in July 2007, and a 4-year mean is 8.4 μg·m-3. It is also shown that monthly mean scattering coefficient derived varies 129 -565 Mm-1, monthly mean absorption coefficient 32-139 Mm-1, and monthly mean single scattering albedo 0.71-0.91, with annual mean values of 0.80, 0.82, 0.79 and 0.84 for 2004, 2005, 2006 and 2007, respectively. Three instruments were used to take simultaneous measurements of BC in PM10, PM2.5, and PM1 and the results showed that PM2.5 took up about 90% of PM10 and PM1 accounted for about 68% of PM2.5, and BC aerosols are mainly present in fine particulates. The variability of BC concentrations is quite consistent between the Nancun station (141 m above sea level) and the Panyu station (13 m above sea level), which are 8 km apart from each other. The concentration in higher altitude station (Panyu) is consistently lower than
基金State Natural Science Foundation of China (No.59878032).
文摘An analytical solution for scattering of plane P waves by circular-arc layered alluvial valleys was derived by Fourier-Bessel series expansion technique, and the solution was utilized to analyze the effects of alluvial sequence and their relative stiffness on the scattering of incident waves.
基金This study was supported by the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDB-SSW-JSC002)Sino-German Center for Sino-German Cooperation Group(Grant No.GZ 1391).
文摘The problem of imaging through thick scattering media is encountered in many disciplines of science,ranging from mesoscopic physics to astronomy.Photons become diffusive after propagating through a scattering medium with an optical thickness of over 10 times the scattering mean free path.As a result,no image but only noise-like patterns can be directly formed.We propose a hybrid neural network for computational imaging through such thick scattering media,demonstrating the reconstruction of image information from various targets hidden behind a white polystyrene slab of 3 mm in thickness or 13.4 times the scattering mean free path.We also demonstrate that the target image can be retrieved with acceptable quality from a very small fraction of its scattered pattern,suggesting that the speckle pattern produced in this way is highly redundant.This leads to a profound question of how the information of the target being encoded into the speckle is to be addressed in future studies.
基金Supported by Chinese Academy of Sciences, Guangdong Provincial Government, Dongguan Municipal Government, CAS Hundred People Initiative (KJCX2-YW-N22)Overseas Outstanding Youth Program of National Natural Science Foundation of China (10628510)
文摘The China Spallation Neutron Source (CSNS) is an accelerator-based multidisciplinary user facility to be constructed in Dongguan, Guangdong, China. The CSNS complex consists of an H- linear accelerator, a rapid cycling synchrotron accelerating the beam to 1.6 GeV, a solid-tungsten target station, and instruments for spallation neutron applications. The facility operates at 25 Hz repetition rate with an initial design beam power of 120 kW and is upgradeable to 500 kW. Construction of the CSNS project will lay the foundation of a leading national research center based on advanced proton-accelerator technology, pulsed neutron-scattering technology, and related programs including muon, fast neutron, and proton applications as well as medical therapy and accelerator-driven subcritical reactor (ADS) applications to serve China's strategic needs in scientific research and technological innovation for the next 30 plus years.